Repository » Data AccessID 99
Detail View - Data AccessID 99

Back

General Information
Manuscript title A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes.
PubMed ID 23831062
Journal FEBS Letters
Year 2013
Authors Kieran Smallbone, Hanan L. Messiha, Kathleen M. Carroll, Catherine L. Winder, Naglis Malys, Warwick B. Dunn, Ettore Murabito, Neil Swainston, Joseph O. Dada, Farid Khan, Pınar Pir, Evangelos Simeonidis, Irena Spasić, Jill Wishart, Dieter Weichart, Neil W. Hayes, Daniel Jameson, David S. Broomhead, Stephen G. Oliver, Simon J. Gaskell, John E.G. McCarthy, Norman W. Paton, Hans V. Westerhoff, Douglas B. Kell, Pedro Mendes
Affiliations Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, UK
Keywords Glycolysis, Systems biology, Enzyme kinetic, Isoenzyme, Modelling
Full text article Smallbone_2013.pdf
Project name


Experiment Description
Organism Saccharomyces cerevisiae
Strain Y23925
Data type metabolites at steady-state
Data units molecules/cell
Execution date not specified


Experimental Details
Temperature (°C) not specified
pH not specified
Carbon source glucose
Culture mode chemostat
Process condition aerobic
Dilution rate (h⁻¹) µmax
Working volume (L) not specified
Biomass concentration (g/L) monitored by measuring the electrical capacitance of the culture.
Medium composition

not specified

General protocol information Sampling method: 10 ml of culture.

Quenching procedure: 10 ml of culture solution into 40 ml of a 60:40 methanol/water solution [1] stored at a temperature of −47 °C [2]. Immediate separation of cells was performed by applying centrifugation (4000 g for 5 min) followed by removal of the quenching solution.

Extraction technique: freezing-thawing in methanol, methanol-water

Sample analyzing method: GC-MS, LC-MS

Methods description - Notes

Samples were analysed using two analytical platforms. Fructose‐1,6‐bisphosphate was quantified applying ultra-performance liquid chromatography mass spectrometry (UPLC‐MS) (Waters Acquity UPLC coupled to a ThermoFisher hybrid electrospray LTQ‐Orbitrap mass spectrometer (Ther ...

Read more
Data file
KIMODATAID99_v2.xlsx Preview file
Alternative format(s)
no file uploaded
Export metadata
RDF: metadataDataEntryID99.rdf
XML: metadataDataEntryID99.xml
Plain text: metadataDataEntryID99.txt
Share | Cite Data EntryID 99


Related Data: AccessID 61 | AccessID 62 | AccessID 69 | AccessID 70 | AccessID 93 | AccessID 97 | AccessID 98 | AccessID 100 | AccessID 111 | AccessID 115 | AccessID 117 | AccessID 120 | AccessID 121 | AccessID 122 | AccessID 123 | AccessID 124 | AccessID 128


Submission and curation

Entered by: Administrator KiMoSysFirst name: Administrator
Affiliation: INESC-ID/IST
Homepage: http://kdbio.inesc-id.pt/kimosys
Interests: mathematical modeling, accessible data, use of data

Created: 2018-07-16 15:49:58 UTC

Updated: 2020-04-24 16:10:35 UTC

Version: 2

Status: (reviewed) 2018-07-16 15:57:33 UTC

Views: 366

Downloads: 67




Associated Models

Here we can find relevant models associated with Data EntryID 99:

Model
EntryID
Model name Category Model Type Data used for Access Json
39 smallbone18 Metabolism ordinary differential equations Model validation {"id":39,"organism_id":null,"comments":"Original model source: in JWS online database.","sbml_file_name":"Smallbone_2013.pdf","article_file_name":null,"category":"Metabolism","used_for":"---\n- Model validation\n","model_type":"ordinary differential equations","pubmed_id":"23831062","dilution_rate":"","name_of_model":"smallbone18","manuscript_title":"A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes.","authors":"Kieran Smallbone, Hanan L. Messiha, Kathleen M. Carroll, Catherine L. Winder, Naglis Malys, Warwick B. Dunn, Ettore Murabito, Neil Swainston, Joseph O. Dada, Farid Khan, Pınar Pir, Evangelos Simeonidis, Irena Spasić, Jill Wishart, Dieter Weichart, Neil W.","journal":"FEBS Letters","affiliation":"Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, UK","project_name":"","biomodels_id":"smallbone18","keywords":"Glycolysis, Systems biology, Enzyme kinetic, Isoenzyme, Modelling","software":"Copasi (www.copasi.org)","control":null,"main_organism":"Saccharomyces cerevisiae","year":2013,"combine_archive_file_name":null,"combine_archive_content_type":null,"combine_archive_file_size":null,"combine_archive_updated_at":null,"review_journal_id":null,"doi":null} Administrator KiMoSys



Associate models to data

- Several models can be associated.

New Model



Back | Top