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SUMMARY

Hundreds of molecular-level changes within central
metabolism allow a cell to adapt to the changing
environment. A primary challenge in cell physiology
is to identify which of these molecular-level changes
are active regulatory events. Here, we introduce
pseudo-transition analysis, an approach that uses
multiple steady-state observations of 13C-resolved
fluxes, metabolites, and transcripts to infer which
regulatory events drive metabolic adaptations
following environmental transitions. Pseudo-transi-
tion analysis recapitulates known biology and iden-
tifies an unexpectedly sparse, transition-dependent
regulatory landscape: typically a handful of regulato-
ry events drive adaptation between carbon sources,
with transcription mainly regulating TCA cycle flux
and reactants regulating EMP pathway flux. We
verify these observations using time-resolved mea-
surements of the diauxic shift, demonstrating that
some dynamic transitions can be approximated as
monotonic shifts between steady-state extremes.
Overall, we show that pseudo-transition analysis
can explore the vast regulatory landscape of dy-
namic transitions using relatively few steady-state
data, thereby guiding time-consuming, hypothesis-
driven molecular validations.

INTRODUCTION

Cellular adaption to environmental changes is orchestrated by

overlapping regulatory mechanisms, typically affecting thou-

sands of molecular components (Gerosa and Sauer, 2011; Chu-

bukov et al., 2014; Pisithkul et al., 2015). How many of these

changes are necessary for cellular adaptation following a given

environmental transition remains an open question, which re-

quires discriminating the active regulatory events that drive

metabolic transitions from molecular chatter. In principle, time-
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resolved data in combination with computational modeling could

identify the role of specific regulatory events in alteringmetabolic

functions (Kao et al., 2004; Buescher et al., 2012; Link et al.,

2013). However, even when focusing on one or a few regulatory

mechanisms, it is simply not realistic to perform all possible

transitions cells are capable of to assess their time-resolved

relevance. Interpreting these data is also difficult: already for me-

dium-sized networks, such as Escherichia coli central meta-

bolism, unknowns in dynamic models typically outpace data

availability (Link et al., 2014). Thus, the combination of many po-

tential regulators with an endless number of adaptations pro-

duces a molecular regulatory landscape that is simply too vast

to be explored by brute force experimentation alone.

The most frequently used approach to this problem infers

active regulatory events from the comparison of starting points

and endpoints of dynamic adaptations, that is, their steady-state

extremes. The idea is that if a particular molecule participates in

important regulation during a transition, then some quantitative

feature of that molecule (e.g., transcript or protein abundance)

should be statistically different in the two steady states (Fig-

ure 1A). The well-recognized problem is that these observed

changes do not have unambiguous interpretations (Gasch

et al., 2000; Price et al., 2013; Keren et al., 2013). For example,

higher protein level of an enzyme does not necessarily imply

higher metabolic flux through the reaction. Increasingly available

network topologies and methods to infer nonmeasurable activ-

ities such as metabolic flux (Sauer, 2006; Kruger and Ratcliffe,

2015) or transcription factor activity (Liao et al., 2003) have

enabled computational methods to reveal the coordinated

changes of regulatory inputs and functional outputs, although

their analysis typically takes an on/off view of regulation (Covert

et al., 2004; Patil and Nielsen, 2005; Ishii et al., 2007). Quantita-

tive testing of correspondence, for example, between metabolic

fluxes and enzyme activity has been achieved for condition pairs

(Rossell et al., 2006). Identification of active regulatory events

from such quantitative data over multiple conditions is typically

based on correlation (Figure 1B) (Chubukov et al., 2013; Oliveira

et al., 2012), that is, on the search for regulators consistently

active in all transitions. However, correlations of this type are

scarce: few, if any, regulatory events seem to prevail under all

conditions (Haverkorn van Rijsewijk et al., 2011; Fendt et al.,
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Figure 1. Identifying Regulatory Events that Actively Drive Transitions from Steady-State Data

(A) Given multiple steady-state measurements of a molecular input such as protein abundance, differential change analysis identifies active regulatory events by

testing the significance of input changes between condition pairs, without considering the functional output.

(B) If functional output information such as metabolic flux for enzyme abundance is available, functional consistency analysis identifies the active regulatory

events by testing input-output proportionality over all conditions.

(C) Pseudo-transition analysis identifies the active regulatory events by testing input-output proportionality between pairs of conditions using regulation co-

efficients (r), thus merging pairwise comparisons with functional testing.

(D) The transcriptional and metabolic network contains multiple input-output interactions among transcription factors, enzymes, metabolites, and fluxes.

(E) Regulation coefficients (r) for an input (y axis) and its output (x axis) describe different regulatory modes. Only near-proportional input changes (rz 1) explain

output changes, and thus are predicted as active regulatory events. Time-course input-output proportionality from dynamic experiments reveals regulatory

events that are active throughout a transition (i.e., true positives) or inactive (i.e., true negatives). Conversely, nonmonotonic trajectories identify regulatory events

with transient activity, that is, false positive and negative predictions.
2010; Chubukov et al., 2013). Generally speaking, present

methods used to infer regulatory relevance frommultiple quanti-

tative steady-state data overlook transition-specific regulatory

events, leaving the question: which regulators actually achieve

a particular cellular adaptation?

Here we introduce an analytical approach that uses multiple

steady-state data to infer the active regulatory events that drive

cellular adaptation as cells transit from one environmental con-

dition to another (Figure 1C). This analysis of ‘‘pseudo-transi-

tions’’ between steady states, in lieu of proper time-course

experiments, identifies active regulation by testing the propor-

tionality between regulatory input and functional output relation-

ships within known network topologies using regulation coeffi-

cients (Rossell et al., 2006). Specifically, we focus on the

transcriptional and metabolic networks of E. coli (Figure 1D),

where we infer transcription factor activities and metabolic

fluxes from metabolite concentrations, transcript levels, and
13C-tracer data during exponential growth on eight carbon sour-

ces. Our analysis of these data through regulation coefficients
C

demonstrates that few regulatory events are necessary to

achieve the carbon flux adaptations between any two nutritional

conditions. This sparse regulation at the transcriptional level

mainly affected tricarboxylic acid (TCA) cycle fluxes, and at

the metabolite level primarily affected Embden-Meyerhoff-

Parnas (EMP) pathway fluxes. We validated the approach by

demonstrating that the regulatory events predicted from steady

states were indeed the main drivers of the diauxic shift from

glucose to succinate.

RESULTS

The Principles of Pseudo-Transition Analysis
Inspired by work from Rossell et al. (2006), here we propose an

approach that identifies the active regulatory events driving dy-

namic transitions between environments from their steady-state

measurements. Specifically, we focus on ‘‘regulation coeffi-

cients,’’ discussed below. Regulation coefficients can be derived

for all regulatory interactions that meet the following condition: at
ell Systems 1, 270–282, October 28, 2015 ª2015 Elsevier Inc. 271



a given steady state (j), the output (O) is well approximated by a

product of power laws of its inputs (I):

Oj =
Y

x
,ðIxj

�
KxÞax : (Equation 1)

Equation 1describesmultiplemolecular inputswith linear scaling

factors (K) and possibly nonlinear gains (a) that contribute to the

output. The gains a can represent activation ða> 0Þ or inhibition
ða< 0Þ with saturation-like ðja j < 1Þ or ultrasensitive ðja j > 1Þ
control. Because of its versatility and tractability, Equation 1

has been used to model various processes such as metabolic

fluxes (Rossell et al., 2006; Chubukov et al., 2013) and gene

expression (Liao et al., 2003; Daran-Lapujade et al., 2007).

Quantifying the contribution of different types of regulatory in-

puts to output changes (transcriptional or posttranslational regu-

lation of protein activity, for example) can then be derived in the

form of regulation coefficients ðrÞ following the original work in

Rossell et al. (2006). Specifically, this involvesmoving Equation 1

to the log space and taking the difference between two condi-

tions j and z, ðD logðxÞ= logðxjÞ � logðxzÞÞ, to eliminate scaling

factors K and linearize the output description:

1=
X
x

rx

rx =ax,
D logðIxÞ
D logðOÞ:

(Equation 2)

The coefficients rx then quantify the fraction of output changes

regulated by each input, capturing different modes of operation

such as antagonist ðr � 0Þ, absent ðrz0Þ, exact ðrz1Þ, or
excess ðr[1Þ regulation (Figure 1E). Assuming that Equation 1

describes the involved mechanisms well and that all operating

inputs are quantified, the coefficients should sum up to unity,

indicating a fully achieved mechanistic explanation of output

changes. In practice, however, most regulatory network recon-

structions are incomplete and only few regulatory layers are

quantified in a given study. In this typical scenario of incomplete

information, regulation coefficients that alone or in combination

reach unity identify all the active regulatory events; that is, the

measured changes in the regulatory input(s) are sufficient to

explain the observed output changes.

Ideally, regulation coefficients are derived from steady-state

extremes of different transitions, because this enables inference

of active regulation for all combinatorial transitions without the

prohibitive workload of measuring all transitions dynamically.

Hence, we refer to identification of active regulatory events by

steady-state regulation coefficients as pseudo-transition anal-

ysis. Because such steady-state coefficients are oblivious to

the dynamic trajectory of regulatory inputs and functional out-

puts, the results are only meaningful under the assumption of

monotonic cellular regulation between steady states. Therefore,

identified regulatory events should be validated with time-course

experiments to support or disprove the assumption (Figure 1E).

Pseudo-transition analysis thus consists of (1) describing

input-output interactions of molecular networks by Equation 1,

(2) estimating regulatory inputs and functional outputs in n mul-

tiple steady-state conditions, and (3) identifying the active regu-

latory events operating in each of the

�
n
2

�
pairwise transitions

using regulation coefficients as derived in Equation 2.
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Quantification of Fluxes,Metabolites, and Transcripts of
E. coli Growth on Eight Different Carbon Sources
As a basis for identification of operating regulatory mechanisms

that drive nutritional transitions, we quantified steady-state

metabolic fluxes, metabolite concentrations, and transcript

levels in E. coli BW25113 growing exponentially in eight nutri-

tional conditions. Specifically, glucose, galactose, gluconate,

fructose, glycerol, pyruvate, acetate, and succinate were cho-

sen as the sole carbon sources because they enter metabolism

at different points (Figure 2A) thus leading to substantially

different physiology (Data S1). Using an isotope-balancing

model, we estimated 34 intracellular fluxes from extracellular

fluxes, growth rate, and 13C-labeling patterns in proteinogenic

amino acids (Kleijn et al., 2010), revealing extensive differences

in usage and activity of central metabolic pathways (Figure 2B;

Data S1). Absolute concentrations of 43 metabolites were

determined by targeted liquid chromatography-tandem mass

spectrometry (LC-MS/MS) (Figure 2C; Data S1). For most me-

tabolites, concentrations varied within an order of magnitude

across conditions but spanned five orders of magnitude across

metabolites (Figure 2C), suggesting a narrow environmental

modulation around metabolite-specific baselines. To assess

the extent of transcriptional regulation, genome-wide transcript

levels were quantified by microarrays (Data S1). Focusing on

genes encoding enzymes and transcription factors of carbon

metabolism, we found the largest differential expression in up-

take and secretion pathways (Figure 2D). Differential expression

was within a 4-fold range for the majority of enzymes and very

low for transcription factors, suggesting that the regulators

themselves were not substantially regulated at the transcrip-

tional level.

Functional Regulation of Flux Changes by Transcription
and Reactants Is Sparse, Transition Dependent, and
Pathway Specific
Having quantified metabolic operation and gene expression,

pseudo-transition analysis was used to identify the active regu-

lation of flux changes by transcript and reactant levels in the

28 pseudo-transitions between the eight steady-state condi-

tions. First, we described the steady-state flux J through a reac-

tion i in condition j by accounting for enzyme abundance (E) and

kinetics (kcat), thermodynamic potential (DG), saturation by sub-

strates (M) with affinity (K) and kinetic orders (a), and all other

unaccounted sources of regulation (U) (Rossell et al., 2006; Chu-

bukov et al., 2013; Noor et al., 2013),

Jij = kcati,Eij,
�
1� eDGij=RT

�
,
Y

x˛Si
ðMxj

�
KixÞaix,Uij; (Equation 3)

to derive regulation coefficients that quantify the contributions of

transcriptional ðreÞ, thermodynamic ðrDGÞ, and substrate ðrsÞ
regulation to the observed flux changes:

rei
=
D logðEiÞ
D logðJiÞ

rDGi
=
D log

�
1� eDGi=RT

�
D logðJiÞ

rsi
=
X
x˛Si

aix,
D logðMxÞ
D logðJiÞ :

(Equation 4)
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Figure 2. Fluxes, Metabolites, and Transcript Levels in E. coli Central Metabolism during Steady-State Exponential Growth on Eight Carbon

Sources

(A) Central carbon metabolism. Black and gray boxes signify quantified and not detected metabolites, respectively.

(B) 13C-based metabolic flux maps for the eight conditions. Numbers and sizes of arrows indicate relative fluxes normalized to the substrate uptake rate in each

condition. Specific substrate uptake rates (q) in mmol,gCDW�1,hr�1 and growth rates (m) in hr�1 are given at the top of each chart. For further analysis, absolute

fluxes (mmol,gCDW�1,hr�1) were used. CDW, cell dry weight.

(C) Determined metabolite concentrations. The color code illustrates the carbon source consistent with (A) and (B).

(D) Transcript levels of the enzyme-encoding genes given in (A) and of transcription factors with central metabolic targets. The color code illustrates the carbon

source consistent with (A) and (B).
The overall contribution rer is given by the sum of the individual

coefficients ðrer = re + rDG + rsÞ, and the putative contribution

from unaccounted regulatory mechanisms is given by the frac-

tion of flux changes that are left unexplained ðru = 1� rerÞ.
Regulation coefficients were obtained by pairing each esti-

mated flux with each (1) enzyme abundance (E), (2) thermody-

namic potential (DG), and (3) reaction substrate abundance (M)

participating in at least one of its contributing reactions. Enzyme

abundances E were estimated from log fold transcript changes

assuming a constant translation rate and correcting for

growth-rate-dependent dilution and total RNA as previously

described (Chubukov et al., 2013), and DG values were inferred

from the measured metabolite concentrations (Data S1; Sup-

plemental Experimental Procedures) (Noor et al., 2014). Reac-

tions with reversed flux directionality were split into separate

forward and backward reactions to estimate the substrate’s ki-

netic orders (a) by a least-squares regression that maximized

explanation of flux changes over all conditions (Data S1; Supple-
C

mental Experimental Procedures) (Chubukov et al., 2013).

Having obtained all necessary quantities in Equation 4, we calcu-

lated regulation coefficients for each of the 59 reactions in the

28 pseudo-transitions (Figure 3A; Data S1). If a reaction is cata-

lyzed by more than one isoenzyme or enzyme subunit, we calcu-

lated their coefficient separately and selected the closest to

one as the maximally possible contribution of transcriptional

regulation.

Based on the distribution of regulation coefficients, we next

quantified the fraction of flux changes through reactions across

transitions explained by the identified active regulatory mecha-

nisms (0.5 % r % 2) (Figure 3A, top panel). Within these bound-

aries, only 32% of reaction flux changes were actively regulated,

namely half in the TCA cycle (17%) and fewer in the EMP (9%),

pentose phosphate (PP), and Entner-Doudoroff (ED) pathways

(6%) (Figure 3A, top panel). Transcriptional and substrate regu-

lation contributed roughly equally, with a quarter of flux changes

showing active regulation by either or both mechanisms,
ell Systems 1, 270–282, October 28, 2015 ª2015 Elsevier Inc. 273



whereas thermodynamic regulation was responsible for only 6%

of the flux changes. Visualizing the number of explained flux

changes on the network provides a bird’s eye view of major dif-

ferences of pathway regulation (Figure 3A, bottom panel).

Whereas EMP pathway fluxes were almost exclusively

controlled by reactant concentrations, TCA cycle and nonoxida-

tive PP and ED pathway fluxes were controlled mainly by tran-

scription, with spurious contributions from substrate concentra-

tions (Figure 3A, top and bottom panels). Conversely, thin lines

reveal reactions whose flux changes over many transitions

were poorly explained by transcriptional and reactant regulation,

mostly in the oxidative PP and upper EMP pathways (Figure 3A,

bottom panel). However, even reactions in well-reconstructed

pathways were explained at best in two-thirds of the transitions,

showing that gaps in flux regulation were present at least

partially in all considered reactions and transitions. Fluxes

through these reactions are presumably regulated under some

conditions by mechanisms not considered, such as product in-

hibition, posttranslational modification, or allosteric regulation.

Beyond general pathway regulation, pseudo-transition anal-

ysis makes specific predictions for each transition. Most reac-

tions featured flux changes that could be fully explained by

combined transcript and reactant regulation in at least some

transitions, demonstrating that activity of regulatory mecha-

nisms is transition dependent. The low frequency of coefficients

near unity, however, shows that active regulation is not the domi-

nant behavior. Almost all reactions exhibited absent (rer z0),

excessive ðrer [1Þ, and even antagonistic ðrer � 0Þ regulation
in most transitions, suggesting that active regulation by any

given mechanism is sparse. To identify active regulatory events

at a single-reaction resolution, we separate overall regulation

into its components (transcriptional, thermodynamic, and sub-

strate) and plot them on the metabolic network in Figure 3B, us-

ing the transition between pyruvate and glucose as an example

(see Figure S1 for all 28 transitions). In this transition, transcrip-

tion upregulated the TCA cycle flux for respiration of pyruvate,

thermodynamics regulated the magnitude and directionality of

the glycolytic-gluconeogenic switch in the lower EMP pathway,

and accumulation of the substrate NADP+ on glucose regulated

the glucose 6-phosphate dehydrogenase entry reaction into the

PP pathway. Overall, the 28 maps revealed a complex pattern of

sparse, transition-dependent, and pathway-specific regulation

of carbon metabolism (Figure 3B; Figure S1).

Transition-Dependent Regulation Governs Adaptations
between Glycolytic and Gluconeogenic Carbon Sources
Regulation coefficients provided a global overview by identifying

the few transcriptional and metabolic regulatory events that

govern flux changes between carbon sources. Could such

events have been identified by the classical methods of differen-

tial change (Figure 1A) and functional consistency analysis (Fig-

ure 1B)? We focused on transcriptional regulation and identified

active regulatory events by testing (1) themagnitude of transcript

log fold changes and (2) the proportionality between transcript

and flux log fold changes across all conditions (Supplemental

Experimental Procedures). From these analyses, we built

receiver operating characteristic (ROC) curves, demonstrating

that neither method could retrieve the regulatory events identi-

fied by pseudo-transition analysis (Figure 3C).
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To identify the reasons for thismisclassification and the biolog-

ical relevance of the identified active regulation, we analyzed the

raw log-log plots between regulatory inputs and flux outputs.

Such plots display not only input-output proportionality as the

slope between data points, that is, the regulation coefficients,

but also themagnitude anddirectionality of flux changes together

with the identity of thecarbonsources, thusallowing identification

of regulatory patterns common across groups of conditions (Fig-

ure 4A; see alsoData S4).We focused on the previously identified

active regulation of the TCAcycle andEMPpathwayby transcrip-

tion and reactants, respectively (Figure 4A).

The largest TCA cycle flux changes that were proportional to

transcription occurred during transitions between low-respiring,

glycolytic, and high-respiring, gluconeogenic carbon sources

(Figure 4A). Notably, transcription controlled only TCA cycle re-

actions whose flux needed to increase for catabolism of a given

gluconeogenic substrate; that is, actively regulated flux changes

started at pyruvate dehydrogenase on pyruvate, at citrate syn-

thase on acetate, and at succinate dehydrogenase on succinate,

and then propagated through the cycle, as shown exemplarily for

the transition from glucose (Figure 4A). Flux changes during tran-

sitions within glycolytic or gluconeogenic carbon sources were

generally not regulated by transcription, suggesting that enzyme

abundance does not limit adaptations when similar modes of the

TCA cycle are in operation.

The log-log plots also offer a visual explanation as to why the

two alternative methods tend to misclassify many regulatory

events (Figure 3C). Differential change analysis (Figure 1A) yields

false positives when fold changes in transcripts are either large

but not proportional or are small but proportional to flux (see,

for example, the TCA cycle in Figure 4A). The strong upregulation

of enzymes during growth on galactose, for example, would be

considered important by differential change analysis, although

TCA cycle fluxes on galactose were among the lowest because

of a known misregulation in the upstream carbon uptake (Haver-

korn van Rijsewijk et al., 2011). Functional consistency analysis

(Figure 1B) also yields false positives when the proportionality

between transcript and flux changes over all conditions is a

poor measure of pairwise proportionalities. TCA cycle regulation

is a good example of where transition-specific analysis of regu-

lation is necessary, because the global proportionality across all

conditions misclassifies many of the regulatory events.

In the lower EMP pathway, flux regulation was achieved by

substrate kinetics during transitions within glycolytic or gluco-

neogenic carbon sources (Figure 4B). Changes in flux direction-

ality, in contrast, were largely driven by the thermodynamic

potential following a transition from glycolytic to gluconeogenic

conditions or vice versa (Figure 4B). Mechanistically, increased

absolute glycolytic flux was thus achieved by moving the lower

EMP pathway reactions farther away from their equilibrium,

which, in turn, increased the ratio between forward and back-

ward reaction rate without requiring changes in enzyme concen-

trations. The log-log plots thus revealed the active regulatory

events driving two major adjustments necessary to transit be-

tween glycolytic and gluconeogenic sources: transcriptional

regulation of respiration to relieve the capacity limitations in

the TCA cycle, whereas switching the lower EMP pathway flux

directionality and magnitude is achieved by reactant-driven

thermodynamics.
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Figure 3. Quantification of Transcriptional and Reactant Regulation of Flux Changes

(A) Distribution of coefficients for overall (rer), transcriptional (re), thermodynamic (rDG), and substrate kinetic (rs) regulation. Portions of bars in gray indicate

contributions from coefficients with low precision (SEM >0.3). The number of flux changes considered for each mechanism is given in the upper plots (n).

Percentages in each plot quantify the fraction of flux changes explained by the corresponding mechanism within at least a factor of two (0.5% r% 2). Metabolic

maps visualize, for each reaction, the number of transitions that are regulated by any of the three mechanisms or their combination (0.5 % r % 2). Portions of

reaction-representing lines in gray indicate contributions from coefficients with low precision (SEM >0.3).

(legend continued on next page)
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A B

Figure 4. Transition-Dependent Regulation of Flux Changes in the TCA Cycle and Lower EMP Pathway

(A) Log-log plots for selected enzyme-flux pairs exemplifying transcriptional regulation of the TCA cycle. In all log-log plots, dotted lines connect glucose to the

gluconeogenic conditions for which positive pairwise coefficients ðrÞ are listed.

(B) Log-log plots for the lower EMP pathway exemplified for the enolase reaction. Dotted lines connect glucose to gluconeogenic conditions; the corresponding

positive pairwise coefficients (r) are listed. The metabolic map visualizes the actively regulated reactions for transitions between glucose and the gluconeogenic

pyruvate, acetate, or succinate.

Error bars represent 1 SD.
Inference of Transcriptional Network Activity Reveals
Regulators of Transition-Dependent Flux Changes
Around a quarter of the determined flux changes were transcrip-

tionally regulated by enzyme abundance (Figures 3A and 3B). To

identify the transcription factors that bring this flux regulation

about, we estimated the nonmeasurable activities (T) of these

factors scaled by the affinities (K) and control strengths (a) on

gene expression (G) of target genes i in condition j by network

component analysis (Liao et al., 2003; Buescher et al., 2010):

Gij =
Y
x˛Ri

ðTxj

�
KixÞaix ; (Equation 5)

thereby reconstructing the expression of 1,526 genes by the ac-

tivity of 185 transcription factors through 3,674 annotated inter-

actions (Data S1). For this reconstructed network of central

metabolism, activity and control strengths (Figures 5A and 5B)

of 21 transcription factors explained the enzyme expression

data well (Pearson correlation = 0.97, p < 0.001). These tran-

scriptional regulatory events fall into two general categories:

those that regulate nutrient import and those that do not.

In accordance with well-established biological literature,

we find that specific regulators of nutrient uptake such as

DcuR, GlpR, GntR, KdgR, GalS/R, Cra, and Mlc induced the
(B) Regulation coefficients for transcriptional and reactant regulation (rer) in the 28

transition between pyruvate and glucose is shown on themetabolic network as an

regulation contributing to overall regulation (rer). See Figure S1 for all 28 transitio

(C) ROC curves show the fraction of transcriptional events correctly/incorrectly i

analysis with respect to pseudo-transition analysis. Stereotypical cutoffs for the

curves show variability using various cutoffs for pseudo-transition analysis.
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expression of specific, required nutrient transporters and

degradation enzymes in the presence of their cognate carbon

sources. In contrast, the cyclic (c)AMP receptor protein CRP

induced the expression of uptake pathways globally (Figures

5A and 5B). Consistent with the proposed role of coordinating

catabolism and anabolism (You et al., 2013), CRP activity

decreased with growth rate (Pearson correlation = �0.89,

p = 0.004) and correlated with its direct (cAMP) and indirect

(a-ketoglutarate) metabolic signals (Figure 5A). In total, the

regulation of uptake pathways was largely consistent with

the canonical model of substrate-specific regulators that are

superimposed on the global, CRP-based catabolite repression

signal (Görke and Stülke, 2008; Kaplan et al., 2008; You et al.,

2013).

In contrast to this general picture of uptake, the transcriptional

regulation of central carbon metabolism was more complex

(Figure 5A). To identify active regulators of flux changes, we

quantified regulation coefficients rg from the inferred transcrip-

tion factor activity and control strengths (Figures 5A and 5B)

with Equation 2:

rgix
=aix,

D logðTxÞ
D logðGiÞ: (Equation 6)
condition pairs. Reactions are indicated by their enzyme-encoding genes. The

example of transcriptional (re), thermodynamic (rDG), and substrate kinetic (rs)

ns. n/a, not available.

dentified as flux regulating by differential changes and functional consistency

two methods are shown as dots on the ROC curves. Shades around the ROC
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Figure 5. Inference of Transcriptional Network Activity on Eight Carbon Sources

(A) Inferred activity of 16 selected transcription factors (TFs) of central metabolism on eight carbon sources. In parentheses is the number of central metabolic

targets for each regulator. CRP and Cra activity are shown as a function of their metabolite effectors (s, slope of linear fit, black dashed lines; c, Pearson

correlation; p, p value).

(B) Estimated control strengths for regulators of central metabolism and uptake pathways on 55 selected enzyme-coding genes. Global regulators with wide-

spread targets are color coded; local regulators are listed in gray next to their targets. The number of regulators targeting each gene is in parentheses.
For visualization, transcription factor activity changes and their

regulation coefficients rg were projected onto the transcriptional

network, and flux changes and their coefficients re were pro-

jected onto the metabolic network (Figures 6A and 6B; Fig-

ure S2). These quantitative maps reveal transcriptional events

that cause flux changes in the 28 transitions. Of 21 possible reg-

ulators, typically not more than a handful regulated flux changes

in any given transition and the relationship between regulation

and flux may be nontrivial (Figure 5B). For example, Cra activity

correlated with EMP pathway flux (Pearson correlation = �0.78,

p = 0.023), consistent with its proposed role as a flux sensor

(Kochanowski et al., 2013), and with its allosteric effectors fruc-

tose-1-phosphate and fructose-1,6-biphosphate (Figure 5A).

Cra repression and activation of glycolytic and gluconeogenic

genes, respectively (Figure 5B), however, were typically not

accompanied by corresponding flux changes (Figure 6B; Fig-

ure S2). This suggests that Cra regulation makes glycolytic

or gluconeogenic enzymes available in overabundance for the

required direction and magnitude but rarely sets the actual

flux. Typically, only a small subset of the numerous transcript

changes in a given transition translated into flux changes, for

example upregulation of the ED pathway flux by the GntR

repressor for gluconate transitions and of the glyoxylate shunt

flux by the IclR repressor for galactose and acetate transitions

(Figure 5B).

Taking a more global view, however, reveals clear trends in

active regulation. Returning to CRP, we see that it actively regu-

lates a large fraction of all TCA cycle flux changes consistently

across many transitions involving multiple different carbon sour-

ces (Figure 6B; Figure S2). Specifically, CRP upregulates the

later portion of the TCA cycle (succinate dehydrogenase to

PEP carboxykinase) during most transitions from glycolytic to
C

gluconeogenic conditions, as confirmed by the corresponding

log-log plots (Figure 6C). Typically, active regulation by one or

very few global transcription factors, such as CRP, was accom-

panied by a single local factor, and together they account for

most non-uptake-related expression changes, for example

CRP and DcuR during the transition from glucose to succinate

(Figures 6B and 6C). Within the complexity of network structure

and number of transcriptional changes, we thus found surprising

simplicity in transcriptional regulation of fluxes, with typically less

than a handful of flux-relevant regulators and enzymes for a

given transition.

Experimental Validation of Predicted Regulators of a
Diauxic Shift Supports the Assumption of Monotonic
Regulation between Steady States
Pseudo-transition analysis predicts that surprisingly few regula-

tory events achieve flux changes between carbon sources, even

for the major metabolic change from glycolysis to gluconeogen-

esis. To validate this key finding, we performed a dynamic car-

bon downshift experiment for the glycolytic-to-gluconeogenic

transition from glucose to succinate. The predicted sparse regu-

latory events for this diauxic shift were (1) upregulation of flux in

four reactions of the TCA cycle from succinate transport to PEP

carboxykinase, achieved mainly through the global factor CRP

(Figures 4A and 6C), and (2) regulation of the flux reversal in

the phosphoglycerate mutase and enolase reactions of the

EMP pathway through the thermodynamic potential (Figure 4B).

In a medium containing both substrates, glucose substantially

repressed succinate uptake such that full exponential growth

on succinate was achieved only 2 hr after glucose depletion (Fig-

ure 7A). For this experiment, we estimated time-resolved fluxes

by flux balance analysis (Figure 7A), enzyme abundances from
ell Systems 1, 270–282, October 28, 2015 ª2015 Elsevier Inc. 277
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Figure 6. Identification of Transcription Factors that Actively Regulate Flux Changes

(A) Transcriptional network of E. coli central metabolism.

(B) Flux-regulating transcription factors for selected pseudo-transitions. Metabolic and transcriptional network layouts are based on Figure 2A and (A),

respectively. In metabolism, size and color represent flux changes and the associated re coefficients closest to unity, respectively. In the transcriptional network,

box-filling colors represent re coefficients, line colors represent rg coefficients, and circle size represents transcription factor activity changes. Only transcription

factors with an active interaction ð0:5%rg%2Þ that are connected to flux-regulating enzymes ð0:5%re%2Þ are shown. See Figure S2 for all 28 transitions.

(C) Log-log plots for DcuR and CRP activity in modulating expression of their TCA cycle targets. Dotted lines connect glucose to the gluconeogenic carbon

sources pyruvate, acetate, or succinate. Error bars in log-log plots represent 1 SD.
cell-density-normalized fluorescence readouts of GFP promoter

reporter plasmids, and metabolite concentrations by LC-MS/

MS. Overall, we obtained dynamic data for 37 fluxes, 61 en-

zymes, 17 metabolites, and 33 thermodynamic potentials with

a resolution of 11 time points over 5 hr (Data S2).

The relevance of transcriptional and reactant regulation was

assessed by calculating proportionalities between regulatory

input and flux output for each reaction over the entire time

course, as quantified by the overall regulation coefficients ðrÞ
obtained through linear fitting (Data S2). To discriminate regula-
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tion operating with continuous rather than transient trajectories

(Figure 1E), we estimated the mean SE in the linear fitting. As ex-

pected from pseudo-transition analysis of steady-state data,

regulation of flux changes was very sparse; that is, only a fraction

of the reactions showed evidence of consistent ðrz1Þ regulation
by any of the three considered mechanisms, as revealed by the

38 transcriptional ðre Þ, 32 thermodynamic ðrDGÞ, and 53 sub-

strate kinetic ðrsÞ overall regulation coefficients (Figure 7B).

More importantly, the specific predictions were also consistent

and found to operate continuously across the entire time course
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Figure 7. Active Regulators of the Diauxic Shift from Glucose to Succinate

(A) Extracellular fluxes and growth rate of E. coli during the diauxic shift from glucose to succinate. Time zero indicates the onset of the shift.

(B) Regulation coefficients for transcription ðreÞ, thermodynamics ðrGÞ, and substrate kinetics ðrsÞ estimated for the overall time-course shift. Descending order

of the top 35 coefficients nearest unity of a total of 123. Mean SEs (MSEr) are shown as horizontal bars.

(C) Log-log plots of top-scoring reactions with flux changes actively regulated by transcriptional regulation of their enzyme-coding genes or thermodynamic

potential (i.e., phospho-glycerate mutase and enolase). Dotted lines indicate the best linear fitting.

(D) Cluster of the upregulated enzyme abundances assessed by GFP promoter reporter plasmids during the shift. Enzymes that actively regulate flux changes

during the shift (red lines) cluster with a CRP promoter reporter (blue line). See Figure S3 for the physiology of the CRP knockout strain (and other regulators)

during the shift.
(Figure 7C; see also Data S5). Transcriptional regulation of

flux changes was limited to succinate transport by the sym-

porter-encoding dctA, succinate dehydrogenase encoded by

the sdhABCD operon, fumarase encoded by the fumAC and

fumB operons, PEP carboxykinase encoded by pck, and, to a

minor extent, malate dehydrogenase encoded by mdh (Fig-

ure 7C). Regulation of flux changes by thermodynamics was

found for the enolase- and phospho-glycerate-mutase-cata-

lyzed reactions (Figure 7C). Notably, no evidence of dynamic

regulation was found for themajority of reactions, demonstrating

that pseudo-transition analysis correctly identified the regulated

reactions with high selectivity (Figure 7B). Moreover, low mean

SE of time-course coefficients showed the trajectories to

be generally monotonic rather than transient (Figure 7B; Data

S5), supporting the basic assumption of pseudo-transition

analysis.

To verify that the enzymes responsible for the flux changes

were indeed under CRP control, we performed hierarchical clus-

tering of enzyme abundances from the 47 promoter reporters

that fell into two large clusters of up- and downregulated

enzymes (Figure 7D; Data S2). Confirming the prediction, a

promoter synthetically engineered to report CRP activation be-

longed to the upregulated enzymes together with the profiles

of all predicted flux-regulating genes dctA, sdhABCD, fumAC,

fumB, pck, and mdh (Figure 7D). Although many other enzyme-

encoding genes were similarly upregulated, including several

known CRP targets (Figure 7D), their altered abundance was

not necessary for the shift (Figure 7B). To confirm CRP’s speci-

ficity, we tested the growth of single-knockout strains for 26 tran-

scription factors directly or indirectly involved in central meta-

bolism, revealing that Dcrp was the only mutant that could not
C

shift to succinate after glucose exhaustion (Figure S3). Based

on steady-state data alone, pseudo-transition analysis thus

correctly predicted CRP as the active key regulator of the hand-

ful of enzymes whose transcriptional regulation drove TCA cycle

flux changes in the shift. Notably, the time-course trajectories

revealed mostly continuous and monotonic operation of the

active regulatory events between the two steady-state ex-

tremes, thus validating the main assumption behind pseudo-

transition analysis.

DISCUSSION

Given the vast number of overlapping regulatory mechanisms

and dynamic adaptations cells are capable of, evaluating quan-

titative and temporal relevance of molecular mechanisms for

each particular adaptation cannot be achieved by brute force

experimentation alone. Thus, strategies and principles that pre-

dict relevant mechanisms from limited observations are needed

for an efficient exploration of molecular regulatory landscapes

(Geva-Zatorsky et al., 2010; Rothschild et al., 2014; Heinemann

and Sauer, 2010; Pisithkul et al., 2015). Here we introduce

pseudo-transition analysis to systematically predict the active

transcriptional and metabolic regulators of all dynamic adapta-

tions betweenmeasured steady-state conditions. Whereas pair-

wise comparisons of steady-state measurements, for example

the transcriptome or proteome, have been used for decades to

identify statistically significant changes, our approach based

on regulation coefficients (Rossell et al., 2006) identifies only

those regulatory events that effectively modulate biological func-

tions. Our results suggest that, in general, microbial adaptation

to new environments does not operate through complicated
ell Systems 1, 270–282, October 28, 2015 ª2015 Elsevier Inc. 279



tuning by many regulators but rather that only a few key regula-

tors are required for a particular transition.

This sparse regulation was typically orchestrated by few me-

tabolites and less than a handful of transcription factors that

modulate generally only four to eight enzymes to drive flux

changes for a given transition. Combined transcriptional and

reactant regulation explained regulation for roughly a third of

the reactions, including many of the largest flux changes across

conditions. For one of the most drastic flux changes in our data-

set, the shift from glucose to succinate, we experimentally vali-

dated the pseudo-transition analysis prediction that the global

transcription factor CRP regulates specifically the TCA cycle

flux. Out of the 41 central metabolic enzymes under CRP control,

we found that only five gene expression changes actually mat-

tered to achieve flux changes. Why do only a few of the many

co-occurring regulatory events appear to matter functionally

for a given transition? To achieve pertinent, albeit not perfect, re-

sponses with a limited number of sensors and regulators, mi-

crobes appear to employ global transcription factors such as

CRP to translate a generic, common signal into a large gene

expression response, only a small subset of which is necessary

for any particular transition, whereas the other genes are pre-

sumably important under other conditions. This scenario would

explain the coexpression of hundreds of genes across similar

conditions (Brauer et al., 2008; Keren et al., 2013; Hui et al.,

2015), some of which can even be detrimental for growth in

some conditions (Price et al., 2013).

Many open questions remain, the most prominent being the

�70% of reactions with flux changes unexplained by transcrip-

tional or reactant regulation. These flux changes were generally

low in magnitude and localized in the upper EMP and PP path-

ways. Even for the best-explained pathways, fluxes were left

unexplained in at least a third of the transitions, and no single

transition was ever fully explained in all its flux changes. One

possibility is that these smaller flux changes are achieved by a

small number of broadly acting regulatory mechanisms that are

able to target many enzymes at a time, such as posttranslational

regulators or pleiotropic low-affinity metabolites (Mensonides

et al., 2013). However, because many reactions were left unex-

plained to varying degrees and in different pathways, it is more

likely that the unexplained flux changes are brought about by

reaction-specific mechanisms such as allosteric regulation (Xu

et al., 2012; Link et al., 2013) or product inhibition (Goyal et al.,

2010).

The requirements for pseudo-transition analysis are experi-

mental data of the involved components, such as transcripts,

proteins, or metabolites, the topology of the underlying meta-

bolic and regulatory interaction networks, and, as the major

enabling element, the inference of nonmeasurable activity states

such as metabolic fluxes (Sauer, 2006; Kruger and Ratcliffe,

2015) or regulator activities (Liao et al., 2003). Directly testable

input-output relationships may be transcription factor activity

and enzyme level or enzyme level and metabolic flux, which

can then be combined to test, for example, whether or not a

given transcription factor activity (input) is a likely explanation

for a determined flux change (output). Analysis is not limited to

metabolism, provided other functional outputs can be quanti-

fied, and it can also incorporate other types of function-

modulating mechanisms such as posttranslational or allosteric
280 Cell Systems 1, 270–282, October 28, 2015 ª2015 Elsevier Inc.
regulation. Continuous development of inference methods and

mapping of regulatory network topologies will greatly facilitate

further applications.

There are theoretical and practical limitations to the accuracy

that one can expect from pseudo-transition analysis. Technical

limitations are linked to the exactness of inference methods

due to incomplete topology or measurement and parameter un-

certainty, which could affect estimations of metabolic flux and

regulatory activities. Other imprecisions might arise from the

linearization of molecular functions in the log space to estimate

regulation coefficients, which limits the simultaneous evaluation

of individual contributions from enzyme subunits, isoenzymes,

and reactions, or cooperativity between transcription factors.

More fundamental is the intrinsic inability to identify functional

regulatory events that are active only transiently during a transi-

tion but not in either of the steady states. Although it would have

been entirely possible that many regulatory events matter only

during dynamic but not steady states, or vice versa, our dynamic

data empirically validate the hypothesis of continuous, mono-

tonic rather than transient regulation, at least at the level of tran-

scription and reactants. Pseudo-transition analysis can now be

used to test whether similar principles of sparse functionality

and monotonicity, which greatly simplify the understanding of

complex regulatory networks, apply also to other regulatory

mechanisms, cellular functions, and environmental or genetic

perturbations.

Despite its possible limitations, pseudo-transition analysis

thus represents, in our opinion, a powerful approach to identify

the active regulators for large numbers of transitions using

comparatively fewstationary observations. Theobtained insights

into cellular regulation can be leveraged to generate hypotheses

that become amenable to molecular validation experiments and

to define boundaries for modeling of metabolic-regulatory sys-

tems. We envision that the analysis of pseudo-transitions will

thus be used to efficiently explore the vast landscape of cellular

regulatory strategies and guide hypothesis-driven, targeted

experimental and computational investigations.

EXPERIMENTAL PROCEDURES

Strains and Measurements

All experiments were performed with E. coli BW25113 wild-type in shake flask

cultures. For the diauxic shift, single-transcription factor knockout strains and

GFP promoter reporter strains were monitored online in 96-well plates using a

plate reader. 13C-labeling experiments were performed using gas chromatog-

raphymass spectrometry (Zamboni et al., 2009) to obtain proteinogenic amino

acid label partitioning. Estimation of fluxes in steady state was done through

whole isotopologue balancing (Kleijn et al., 2010). Fluxes during the diauxic

shift were estimated by minimization of the sum of fluxes using flux balance

analysis from the COBRA Toolbox (Schellenberger et al., 2011) and a stoichio-

metric model (Data S3) constrained with carbon exchange and growth rates

(Data S1; Supplemental Experimental Procedures). Metabolite concentrations

were quantified by ion-pairing LC-MS/MS (Buescher et al., 2010). Thermody-

namic driving forces were calculated from metabolite concentrations using a

variant of the constraint-based method max-min driving force (Noor et al.,

2014).

Transcriptome analysis with single-color Agilent E. coli gene expression

8315k (020097) microarrays was done for three independent, exponentially

growing cultures per carbon source (Data S1; available in the ArrayExpress

database [https://www.ebi.ac.uk/arrayexpress] under accession number

E-MTAB-3392). Transcription factor activities and control strengths were in-

ferred by network component analysis (Liao et al., 2003) using a published

https://www.ebi.ac.uk/arrayexpress


stochastic implementation (Buescher et al., 2012) with the transcriptional

network topology from RegulonDB (Salgado et al., 2013) (Data S1). The best

of multiple reconstructions was considered for analysis (Supplemental Exper-

imental Procedures). Enzyme abundances during the diauxic shift were esti-

mated using (GFP)-based promoter reporter plasmids constructed by us or

from a library (Zaslaver et al., 2006). Online measurements of OD600 and

GFP fluorescence in a plate reader were analyzed to obtain the expression

profile (GFP/OD) (Gerosa et al., 2013).

Estimation of Regulation Coefficients

To obtain regulation coefficients, the stoichiometric model (Data S3) and the

transcriptional topology (Data S1) were used to compile a list of flux-enzyme,

flux-DG, flux-substrate, and transcription factor-gene pairs. Regulation coeffi-

cients were calculated as the slope between fold changes of regulatory inputs

and functional outputs between conditions as defined generally in Equation 1

and specifically in Equations 4 and 6. The SEM was calculated by error

propagation of SDs in input measurements (Data S1). Kinetic orders (a) were

estimated by linear regression (Chubukov et al., 2013) (Supplemental Experi-

mental Procedures).

For the diauxic shift, metabolite concentrations and thermodynamic poten-

tials were synchronized on the sampling time of metabolic fluxes by linear

interpolation. For each flux-enzyme, flux-DG, and flux-substrate pair, overall

regulation coefficients ðrei ; rDGi
; rsix Þ were estimated by orthogonal regres-

sion over all the time-course data (Data S2). Kinetic orders ðaÞ used for calcu-

lation were those inferred from steady-state data (Data S1).
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Figure S1. 28 maps for regulation of flux changes of all pseudo-transitions, related to Fig. 3. 

The figure is composed as in Fig. 3B. For each of the 28 pseudo-transitions, regulatory 

coefficients for transcriptional and reactant regulation (ρer) are shown as a breakdown of the 

individual transcriptional (ρe), thermodynamic (ρΔG) and substrate kinetic (ρs) regulation on the 

metabolic network as in Fig. 2A. Log fold changes in flux between the two compared steady 

state conditions are shown by the thickness of the corresponding metabolic reaction. 

 



 

 

 
 

Figure S2. 28 maps for transcriptional regulation of flux changes of all pseudo-transitions, 

related to Fig. 6. The figure is composed as in Fig. 6 of the main text and shows all the 28 

pseudo-transitions.  



 

 

 
 

Figure S3. Dynamic growth of single transcription factor knockouts in the glucose and 

succinate medium, related to Fig. 7. A) Time-course growth rate of 26 single transcription 

factor knockout strains in the glucose and succinate medium. The transcription factor’s name is 

shown on top of the corresponding growth curve (WT: wild type). CRP is the only transcription 

factor deletion abolishing the second growth phase on succinate. B) The same showing the 

Optical Density. 



 

 

Supplemental Datasets 
 

Dataset S1. Measurements and estimates for the steady state data in the eight different carbon 

sources. Contains: physiology, metabolic fluxes, metabolite concentrations, thermodynamic 

potentials, transcriptional network activity, kinetic orders and regulation coefficients.  

  

Dataset S2. Measurements and estimates for the diauxic shift from glucose to succinate. 

Contains: physiology, metabolic fluxes, metabolite concentrations, thermodynamic potentials, 

GFP promoter reporters, regulation coefficients. 

 

Dataset S3. Stoichiometric model of E. coli central metabolism.  

 

Dataset S4. Log-log plots for all reactions and regulatory mechanisms for the eight steady 

states. 

 

Dataset S5. Log-log plots for all reactions and regulatory mechanisms during the diauxic shift.  

Extended Experimental Procedures 

Strains, growth conditions and cultivation 

All experiments were performed with E. coli BW25113 wild-type (Baba, Ara et al. 2006). Steady 

state physiology, 13C-labelling, metabolite and RNA levels were obtained from exponentially 

growing cultures (Dataset S1). Cultivation was done in 35 ml M9 minimal medium with 5 g/L of 

one of the eight carbon source in 500 ml shake flasks at 37°C, 300 rpm, and a shaking diameter 

of 5 cm. Frozen glycerol stocks were used to inoculate Luria-Bertani (LB) complex medium. 

After 6 hours of incubation at 37ᵒC and constant shaking, LB cultures were used to inoculate 

M9 medium precultures with the indicated carbon sources for overnight cultivation. Final 

cultures were inoculated 1:100 (v/v) with the same carbon source the next day.  

For the diauxic shift experiment, the same inoculation scheme was used and physiology and 

metabolite levels were determined in 50 ml M9 medium cultures with 0.5 g/l glucose and 5 g/l 

succinate in 500 ml shake flasks at 37°C, 300 rpm, and a shaking diameter of 5 cm. Single TF 

knockout strains and GFP-promoter reporter strains were cultured in 96 deep-well plates 

(Kuehner AG, Birsfeld, Switzerland). Deep-well plates with minimal medium and glucose as the 

sole carbon source were inoculated 1:50 from LB precultures and incubated overnight at 37°C 

under shaking. Subsequently, 96 well flat transparent plates (Nunc, Roskilde, Denmark) 

containing M9 medium (fill volume 200 µL) with 0.5 g/l glucose and 5 g/l succinate were 

inoculated 1:200 with overnight cultures and sealed with parafilm to reduce evaporation. GFP-



 

 

promoter strains were cultivated and monitored on-line during the shift at 37°C with shaking 

using a plate reader (TECAN infinite M200, Tecan Group Ltd., Männedorf, Switzerland).  

 

Determination of growth physiology  

Cell growth in shake flask was monitored by determining the optical density at 600 nm (OD600) 

using a spectrophotometer (Spectra Max Plus, Molecular Devices, Sunnyvale, CA). For steady 

state experiments, growth rates were determined by log-linear regression of OD600 during the 

exponential phase from at least four data points. Extracellular carbon accumulation and 

depletion were determined using HPLC (Heer and Sauer, 2008). Carbon uptake and secretion 

rates were determined from at least three biological replicates of independent shake flask 

experiments from at least four points in the exponential phase. Cell dry weight (CDW) was 

calculated from liter per OD600 using pre-determined conversion factors for each carbon source 

(Dataset S1). The biomass yield was calculated as the inverse of the slope of concentration 

against cell dry weight. The non-inversed slopes were further multiplied with the growth rate to 

obtain uptake and secretion rates.  

For the diauxic shift, time-dependent growth rates were calculated by two-point finite 

difference numerical approximation of the natural logarithm of OD600 from two independent 

shake flask experiments. Cell dry weight was calculated from OD600 using the conversion factor 

estimated for growth on glucose (Dataset S1). Analytical functions were fit to time-courses of 

external metabolite concentrations to obtain carbon uptake and secretion rates by two-point 

finite difference numerical approximation divided by the corresponding cell dry weight (Dataset 

S2).  

 

Metabolic flux analysis 

For steady state analyses, separate 13C-labeling experiments were performed with a mixture of 

20% (wt/wt) [U-13C] labeled isotopologue (>99%; Cambridge Isotope Laboratories, Andover, 

MA) and 80% (wt/wt) of natural abundance carbon sources. Separate 13C-labeling experiments 

were performed with 100% [1-13C]galactose, [1-13C]glucose, [1-13C]gluconate and [1-
13C]fructose (>99%; Cambridge Isotope Laboratories, Andover, MA) and [1,3-13C]glycerol (>99%; 

CortecNet Voisins-Le-Bretonneux, France). Aliquots of fractionally 13C-labelled biomass were 

prepared from exponentially growing cultures and analyzed by gas chromatography mass 

spectrometry (GC-MS)(Zamboni et al., 2009).  

Estimation of absolute fluxes was done by whole isotopologue balancing (Kleijn et al., 2005; van 

Winden et al., 2005), using cumomer balances and cumomer to isotopologue mapping matrices 

(Wiechert et al., 1999) to calculate isotopologue partitioning of metabolites in a pre-defined 

stoichiometric network model for a given flux set. The flux set giving the best correspondence 

between measured and simulated 13C-label partitioning and physiology measurements of 



 

 

growth and extracellular fluxes (Dataset S1) was determined by non-linear optimization and 

selected as the final flux distribution. Standard deviations for metabolic fluxes were estimated 

through Monte Carlo simulations by re-estimating fluxes after adding Gaussian noise to the 

measured 13C-labeling data (Schmidt et al., 1999) (Dataset S1).  

Dynamic flux changes during the diauxic shift were estimated by flux balance analysis using the 

COBRA Toolbox (Schellenberger et al., 2011) and a stoichiometric model of central metabolism 

(Dataset S3). Fluxes were estimated constraining the model by the estimated carbon uptake 

rates, carbon secretion rates and growth rate (Dataset S2) under minimization of sum of fluxes 

and assuming pseudo-steady state for each time point. Lower and upper bound for exchange 

fluxes and biomass were set to one standard deviation of replicates. Upper and lower bounds 

for flux estimates were calculated by flux variability analysis. 

 

Intracellular metabolite concentrations by LC-MS/MS 

For steady state analysis, 1 ml aliquots were taken in a 37°C room from exponential phase 

cultures. After vacuum-filtration on a 0.45 μm pore size nitrocellulose filter (Millipore), samples 

were immediately washed with two volumes of fresh 37°C M9 medium containing the 

respective carbon source at a pH adjusted to the value of the culture broth at the time of 

sampling. Subsequently filters were directly transferred for extraction into 4 ml of 60% (v/v) 

ethanol/H2O to which 100 μl of internal standard (fully 13C-labelled Saccharomyces cerevisiae 

extract) was added and incubated at 78°C for 2 min. For the diauxic shift, 2 ml aliquots were 

withdrawn at 9 different points and vacuum-filtered on a 0.45 μm pore size nitrocellulose filter 

(Millipore). Filters were directly subjected to cold extraction (-20°C) with 40:40:20 

acetonitrile/methanol/water containing 200 μl of internal standard (fully 13C-labelled 

S. cerevisiae extract). In both cases, extracts were separated from the filters and residual cell 

debris and nitrocellulose was removed by centrifugation. Cell extracts were thawed, dried at 

120 μbar, and resuspended in 100 μl deionized H2O of which 15 μl were transferred into 

rubber-sealed HPLC tubes. Metabolite abundances were determined by ion-pairing ultra-high 

performance liquid chromatography (UPLC)-tandem MS (Buescher et al., 2010) and quantified 

through a dilution series of a mix containing all metabolites and internal standard. Intracellular 

metabolite concentrations in µmol/mL were calculated from metabolite abundances in 

µmol/gCDW using a previously determined conversion factor to intracellular cytosolic volume 

(Dataset S1). 

 

Estimation of thermodynamic potentials 

To estimate thermodynamic driving forces for each reaction in our network, we used a variant 

of the constraint-based method max-min driving force (Noor et al., 2014). Briefly, we set 

concentrations of measured metabolites allowing other metabolites to vary within physiological 



 

 

ranges. We used the component contribution method (Noor et al., 2013) to calculate standard 

Gibbs energies and set the net flux direction for each reaction according to estimated metabolic 

fluxes. Finally, we applied the MDF optimization iteratively to maximize the driving forces in all 

reactions given the constraints and propagated measurement errors of metabolite 

concentrations to calculate upper and lower bound for each reaction. Infeasibilities, which 

accounted for only 4% (13/336) of the estimated ∆Gs, were solved by iteratively relaxing the 

corresponding directionality constraints.  

Current metabolomics methods are not sufficient for obtaining a complete picture of the 

changes in Gibbs free energies for all the reactions in central metabolism. The main hurdle is 

the incomplete quantification of several key metabolites (such as erythrose-4P, BPG, GAP, 

glyoxylate, and the individual concentrations of 2PG and 3PG). In order to obtain a full 

estimation of the driving force of all active reactions in the model, we assumed that these 

unknown concentrations can vary within a physiological range (10-6 - 10-2 M) and applied the 

optimization criterion which is based on the Max-min Driving Force principle (Noor et al., 2014). 

According to this principle, the concentrations of the unknown metabolites are adjusted to 

maximize the driving force of the least energetic reaction in the network. However, applying 

this principle only once typically leaves many of the metabolites' concentrations free as they do 

not limit the driving force of the bottleneck reaction. Here, we implemented an extension of 

MDF, called IMDF, that performs the optimization iteratively, each time fixing the 

concentrations of a subset of metabolites (and thus the driving force of the bottleneck 

reaction), and in the next step optimizing the driving forces of the remaining reactions which 

are not yet fixed. The algorithm terminates when the concentrations of all metabolites in the 

network become fixed - and these values are also the output of the method. Since all 

metabolites now have unique concentration, the driving forces of all the reactions in the model 

can be determined. We propagated the standard deviation measurement errors of metabolite 

concentrations appearing in each reaction to calculate the upper and lower bound for each 

reaction. The source code for IMDF can be obtained from GitHub 

(https://github.com/eladnoor/component-contribution)  

The input paramters for IMDF were: 

 Stoichiometric matrix: We use the same stoichiometric matrix as the one used for MFA 

in order to determine the absolute fluxes in the network. 

 Standard Gibbs free energies: The component-contribution method (CCM) (Noor et al., 

2013) is used to estimate the mean value and confidence interval of the Gibbs free 

energy in standard conditions - ΔG'°.  

 Metabolite concentrations: Metabolomics measurements provide concentrations for 

some of the metabolites in the model (with confidence intervals estimated from the 

standard error of biological repeats). For those metabolites which are not measured by 

this method, the intervals are set to the general physiological range of 10-6 - 10-2 M. 

https://github.com/eladnoor/component-contribution


 

 

 Flux directions: MDF does not require the actual values of the fluxes in the system, but 

the direction of flux is used for setting the constraints on the driving forces. Flux 

direction was set according to results from 13C flux analysis. 

 

Transcripts levels by microarrays  

Aliquots of three independent cultures were harvested during exponential phase on each 

carbon source. RNA synthesis was blocked by adding 10% (v/v) stop solution (5% (v/v) TE-

saturated-phenol in 95% ethanol) and samples were mixed and spun down for 10 min at 4ᵒC. 

Supernatants were decanted and cell pellets redissolved in 200 µl of TE buffer (10 mM Tris·Cl, 1 

mM EDTA, pH 8.0) containing 15 mg/ml lysozyme, vortexed for 10 s and incubated at room 

temperature (15–25°C) for 10 min under constant shaking. 700 µl of RLT buffer was added from 

the RNeasy Mini Kit (QIAGEN), samples were vortexed for 10 seconds then transferred to 2 ml 

Safe-Lock tubes containing acid-washed glass beads. Cells were mechanically disrupted by 

vortexing for 10 minutes at maximum speed. After centrifugation supernatants were 

transferred to a new tube and mixed with 470 µl ethanol. Total RNA was extracted from the 

bacterial lysates using the RNeasy Mini Kit (QIAGEN), followed by removing residual genomic 

DNA with the Turbo DNA-free Kit (Ambion). The microarray experiment used three 

independent RNA isolations from each strain that were pooled together with equal quantity. 

Gene expression was assessed by single color Agilent E. coli GE, 8x15k (020097) arrays (Dataset 

S1). After analysis by PCA, one replicate for growth on acetate was found to be substantially 

dissimilar from the other two and was removed from further analysis. Microarray data are 

available in the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number 

E-MTAB-3392. 

Calculation of relative protein changes was based on the assumption that translation rates are 

not affected by the environmental perturbations. As described before (Chubukov et al., 2013), 

log fold changes in enzyme abundance (E) can thus be calculated from the measured transcript 

levels (T),  growth rate-dependent total RNA (R) and measured growth rates: 

 

log(𝐸𝑖𝑗 𝐸𝑖𝑧⁄ ) = log(𝑇𝑖𝑗 𝑇𝑖𝑧⁄ ) + log(𝑅(𝜇𝑗) 𝑅(𝜇𝑧)⁄ ) − log(𝜇𝑗 𝜇𝑧⁄ ) 

 

where the index i refers to a gene and the index j and z to one of the eight conditions. The 

amount of mRNA per biomass was assumed to be a constant fraction of total RNA, while total 

RNA was assumed to be a function of the growth rate; an affine fit was calculated based on 

published data (Bremer and Dennis, 1996) (Dataset S1). For a large fraction of the transcripts 

the fold changes were within an order of magnitude of growth-dependent dilution, hence 

estimated protein abundances generally decreased with growth rate, in line with experimental 

evidence (Klumpp et al., 2009) (Gerosa et al., 2013). 



 

 

 

Transcriptional network activity by network component analysis (NCA) 

Transcription factor activities and control strengths were inferred through network component 

analysis (Liao et al., 2003) using the transcriptional network topology from RegulonDB (Salgado 

et al., 2013), updated with interactions from DNA-protein interaction screens (Shimada et al., 

2010)(Shimada et al., 2011)(Dataset S1). To perform estimation on a not NCA-compliant 

topology, we employed a previously published stochastic implementation (Buescher et al., 

2012) that was run 2500 times with random initial parameters. The best reconstruction, i.e. 

with the lowest sum of squared errors, was considered for analysis (Dataset S1). The 

reconstruction was fairly accurate with Pearson correlation between measured and 

reconstructed expression of 0.92 and with 77% of control strengths matching annotated 

regulatory modes of activation and repression. 

 

Enzyme abundance during the shift by GFP-reporters  

To measure enzyme abundance for the entire carbon metabolism, 37 strains of green 

fluorescent protein (GFP)-based promoter reporter plasmids were obtained from a library 

(Zaslaver et al., 2006) and an additional 23 were constructed by PCR following the procedures 

of the original study (Dataset S2). On-line measurements of OD600 and GFP fluorescence 

(excitation wavelength: 500 nm, emission wavelength: 530 nm) were performed using a plate 

reader (TECAN infinite M200, Tecan Group Ltd., Männedorf, Switzerland) at 10 min intervals 

and analyzed using custom MATLAB software to obtain growth rate (dln(OD)/dt) and 

expression profile (GFP/OD) as previously described (Gerosa et al., 2013). Hierarchical 

clustering of expression profiles was based on Pearson correlation and performed using the 

pdist and linkage MATLAB functions (Dataset S2).  

 

Estimation of regulation coefficients 

To obtain regulation coefficients, the stoichiometric model (Dataset S3) and the transcriptional 

topology (Dataset S1) were used to compile a list of flux-enzyme, flux-∆G, flux-substrate and 

transcription factor-gene pairs as described in the main text. Regulation coefficients were 

calculated as the slope between fold changes of regulatory inputs and functional outputs 

between conditions as defined generally in Eq. 1 and derived for regulation of metabolic fluxes 

in Eq. 4 and for gene expression in Eq. 6 Corresponding log-log plots are available in Dataset S4. 

For the diauxic shift, time-course metabolite concentrations and thermodynamic potentials 

were synchronized on the same sampling time of metabolic fluxes by linear interpolation. For 

each flux-enzyme, flux-∆G and flux-substrate pair, overall regulation coefficients (ρ̅𝑒𝑖 , ρ̅∆𝐺𝑖 , ρ̅𝑠𝑖𝑥) 

were estimated by orthogonal regression over all the time-course data points. Kinetic orders 



 

 

(𝛼) used for calculation were the one inferred from steady state data (Dataset S1). Log-log plots 

for each flux-enzyme, flux-∆G and flux-substrate pair during the shift are available in Dataset 

S5. 

The standard deviations 𝜎𝜌 and 𝜎∑𝜌𝑥   for regulation coefficients of individual and aggregate 

regulatory inputs, respectively, comparing conditions j and z were calculated by error 

propagation of standard deviations for regulatory inputs (𝜎𝐼) and functional output (𝜎𝑂) 

measurements as derived from Eq. 1:  

 

   

𝜎𝛼𝑥∙∆log⁡(I𝑥) = 𝛼𝑥 ∙ √(𝜎𝐼𝑥𝑗 𝐼𝑥𝑗⁄ )
2

+ (𝜎𝐼𝑥𝑧 𝐼𝑥𝑧⁄ )
2

𝜎∆log⁡(O) = √(𝜎𝑂𝑗 𝑂𝑗⁄ )
2
+ (𝜎𝑂𝑧 𝑂𝑧⁄ )2

𝜎𝜌𝑥 = √(
𝜎𝛼𝑥∙∆log⁡(I𝑥)

α𝑥∙∆log(𝐼𝑥)
)
2

+ (
𝜎∆log⁡(O)

∆log(𝑂)
)
2

∙ 𝜌𝑥 𝜎∑𝜌𝑥 = √∑ 𝜎𝜌𝑥
2

𝑥

 Eq. MM1 

 

The standard error of measurement (SEM) was calculated from the standard deviations and the 

number of independent observations of measurements (n=3): 

𝑆𝐸𝑀 = 𝜎𝜌 √𝑛⁄  

 

Estimation of kinetic orders 

With enzyme abundance, thermodynamic potential and substrate concentrations available for 

multiple steady states, unknown kinetic orders (α) necessary to quantify substrate regulation 

(ρ𝑠) can be estimated by linear regression as an upper-bound in explaining the observed flux 

changes (Chubukov et al., 2013): 

min0≤𝛼≤5 ⁡⁡⁡⁡log(𝐽𝑖) − log(𝐸𝑖) − log(∆𝐺𝑖) = ∑ 𝛼𝑖𝑥𝑥∈𝑆𝑖
∙ log(𝑀𝑥) Eq. MM2 

with α constrained to be between 0 and 5 to set a biologically realistic upper bound on the non-

linear gain. We estimated kinetic orders independently for each flux-enzyme pair and flux 

directionality by least square optimization of Eq. MM2 using the lsqlin function of MATLAB 

(Dataset S1).  

 

Performances of differential change and functional consistency analyses quantified by ROC 

curves 

For differential change analysis, reactions were classified as actively regulated when log fold 

changes in transcript levels exceeded a given cut-off C (⁡|∆log2(𝐸)|≥C) for at least one of the 

enzymes. For functional consistency analysis, reactions were classified as actively regulated 

when the proportionality between log fold transcript and flux changes, as quantified by the 

regulation coefficient 𝜌̅ estimated by orthogonal regression over all conditions (log(𝐽) ∙ 𝜌̅ =



 

 

log(𝐸)), was near unity within a certain displacement D (1 − 𝐷 ≤ 𝜌̅ ≤ 1 + D) for at least one 

of the enzymes. For each of the 28 pairwise comparisons, the cut-off C and the displacement D 

were varied to obtain classifications gradually ranging from all reactions being classified as not 

regulated to all reactions being regulated. The gold standard of pseudo-transition analysis was 

obtained by classifying each reaction as actively regulated if at least one of its enzymes 

explained flux changes within a factor of two (0.5 ≤ 𝜌𝑒 ≤ 2). True and false positive rates of 

classification by differential change and functional consistency analysis were thus calculated as 

the fraction of reactions correctly/incorrectly identified as actively regulated with respect to the 

gold standard. To ensure independence from the selected cut-offs, the same operations were 

repeated using three alternative cut-off sets for pseudo-transition analysis (0.8 ≤ 𝜌𝑒 ≤

1.2⁡,0.3 ≤ 𝜌𝑒 ≤ 3, 0.25 ≤ 𝜌𝑒 ≤ 4). The obtained ROC curves were used to define the 

boundaries for true and false positive rates. 
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