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Abstract

A decade ago, a team of biochemists including two of us, modeled yeast glycolysis and showed that one of the most
studied biochemical pathways could not be quite understood in terms of the kinetic properties of the constituent enzymes
as measured in cell extract. Moreover, when the same model was later applied to different experimental steady-state
conditions, it often exhibited unrestrained metabolite accumulation. Here we resolve this issue by showing that the results
of such ab initio modeling are improved substantially by (i) including appropriate allosteric regulation and (ii) measuring the
enzyme kinetic parameters under conditions that resemble the intracellular environment. The following modifications
proved crucial: (i) implementation of allosteric regulation of hexokinase and pyruvate kinase, (ii) implementation of Vmax

values measured under conditions that resembled the yeast cytosol, and (iii) redetermination of the kinetic parameters of
glyceraldehyde-3-phosphate dehydrogenase under physiological conditions. Model predictions and experiments were
compared under five different conditions of yeast growth and starvation. When either the original model was used (which
lacked important allosteric regulation), or the enzyme parameters were measured under conditions that were, as usual,
optimal for high enzyme activity, fructose 1,6-bisphosphate and some other glycolytic intermediates tended to accumulate
to unrealistically high concentrations. Combining all adjustments yielded an accurate correspondence between model and
experiments for all five steady-state and dynamic conditions. This enhances our understanding of in vivo metabolism in
terms of in vitro biochemistry.
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Introduction

Molecular biology is based on the paradigm that living

organisms can eventually be understood in terms of physics,

chemistry and organization. Indeed, biochemistry and molecular

biology have furnished impressive examples where the precise

mechanism of action of individual macromolecules, such as DNA

and the proton-translocating ATPase was elucidated. At this stage,

however, no functional network of macromolecules is understood in

the sense of physics and chemistry, such that a computational

model made precise predictions that have been validated by the

corresponding experiments.

The best-researched biological network is the breakdown of

glucose. The enzymes of yeast glycolysis have been examined

qualitatively and quantitatively for almost a century. Since the

1960s many kinetic computer models of yeast glycolysis have been

constructed. The early models focused on the mechanisms

underlying oscillations in yeast cultures and cell extracts, and

were not much concerned with quantitative precision [1,2,3,4,5].

Developments in Metabolic Control Analysis (MCA) inspired the

construction of a new generation of models to study the

distribution of flux control in glycolysis. The aim of these models

was primarily to amplify or redirect the flux through glycolysis

[6,7,8,9]. Two more recent kinetic models zoomed in on the role

of detailed enzyme kinetics [10,11,12]. The model of Rizzi et al.

[11] implemented published kinetic mechanisms and affinity

constants and fitted the Vmax values to the dynamic response of

yeast after addition of excess glucose. Hynne et al. [10] modeled

the dynamic characteristics of oscillating yeast suspensions to

estimate not only the enzyme capacities (Vmax) but also their affinity

constants (Km) [10]. Both these approaches used the modeling for

estimation of the in vivo values of kinetic parameters.

Heijnen and colleagues have argued that the discrepancy

between in vitro and in vivo enzyme kinetics precludes reliable

modeling based on detailed enzyme kinetic equations [13]. To

overcome this problem they proposed the so-called lin-log

approach [13], a simplified kinetic description that is closely

related to mosaic non-equilibrium thermodynamics (MNET) [14].

The lin-log kinetic framework resulted in accurate model

predictions with fewer parameters to be fitted [15,16,17]. This

‘minimalist’ approach demonstrated the importance of the

feedback and feed forward loops for glycolytic dynamics [18,19].

PLoS Computational Biology | www.ploscompbiol.org 1 April 2012 | Volume 8 | Issue 4 | e1002483



Teusink et al. was the first to actually evaluate to what extent

biochemical knowledge obtained from in vitro studies could be used

to predict the glycolytic flux and the concentrations of glycolytic

intermediates in yeast [12]. They concluded that the in vitro

kinetics did not quite describe the in vivo activity for all of the

glycolytic enzymes satisfactorily. In order to obtain a satisfactory

description, they had to displace the kinetic parameter values away

from their in vitro magnitudes, albeit only in a few cases far beyond

the standard error of the means.

The model of Teusink et al. [12] was initially only tested for one

experimental steady state. Implementation of Vmax values from

cultures grown under other conditions into the Teusink et al.

model, has not been very successful. Often the model fails to reach

a steady state and accumulate intermediate metabolites while the

real yeast cultures do reach such a steady state (S. Rossell, personal

communication; and this study). Reijenga et al. [20] used the

model by Teusink et al. [12] to study spontaneous oscillations. The

predicted frequency of the oscillations was close to experimental

findings, but the concentrations of the oscillating metabolites

predicted by the model did not match the experimental counter

parts [20].

The observed discrepancies between experiments and models

could in principle be caused by various regulatory mechanisms,

such as enzyme-enzyme interactions, channeling and rapid

posttranslational modifications. Another obvious reason might be

that, until recently, enzyme kinetic parameters were most often

determined under non-physiological conditions that had been

optimized for high enzyme activity (but see [12]). This was

warranted in view of the original goal of such studies to elucidate

catalytic mechanisms, but does not fit the newer goal of

understanding the in vivo dynamics of metabolic pathways. So far

enzyme kinetics have hardly been studied under conditions that

resemble the intracellular environment. Recently, we therefore

developed an assay medium that should resemble the yeast cytosol

[21]. A substantial number of enzyme activities measured in the in

vivo-like medium differed substantially from the activities in the

‘optimal’ non-physiological media [21]. These differences might

provide a way out of the above impasse.

Here we therefore revisit the question whether in vitro enzyme

kinetics can be used to predict in vivo yeast glycolysis. To this end

the computer model of yeast glycolysis by Teusink et al. [12] was

revised by including Vmax values and values of parameters that

were measured in the new in vivo-like assay medium. In addition,

hitherto missing but known allosteric regulators were implemented

in the model. We show that if both innovations are combined,

accurate model predictions are obtained. In contrast to earlier

studies, a single model could be used to describe five different

experimental situations.

Results

Summary of the experimental data used in the glycolytic
model

We validated the revised model of yeast glycolysis by comparing

the model predictions to independently measured fluxes and

metabolite concentrations in Saccharomyces cerevisiae before and after

nitrogen starvation. We studied: (i) non-starved cells from a

glucose-limited chemostat culture grown under respiratory

conditions (dilution rate D = 0.1 h21), (ii) cells grown under these

respiratory conditions and subsequently starved for nitrogen

during 4 h, (iii) non-starved cells grown under respirofermentative

conditions (glucose-limited chemostat, D = 0.35 h21) and (iv) 4 h

nitrogen-starved cells derived from this respirofermentative

culture. From each of the four cultures yeast cells were harvested

to measure (i) the maximal glycolytic flux and the intracellular

metabolite concentrations in an off-line assay under anaerobic

glucose-excess conditions (fermentative capacity [22,23]), (ii) the

Vmax of the glycolytic and fermentative enzymes, and (iii) the

kinetic parameters of glucose transport across the plasma

membrane. The fluxes and metabolite concentrations have

already been reported in [23] and are taken from there. The

Vmax values presented in [23] had been measured under assay

conditions that were optimal for each enzyme and that do not

resemble the in vivo conditions (Table S5). We refer to these as

‘Vmax optimized assays’ to distinguish them from the Vmax values

that were measured for the present study in the same samples

under in vivo-like conditions (this study; Table S4). In addition, we

have redetermined all kinetic parameters of glyceraldehyde-3-

phosphate dehydrogenase under in vivo-like conditions and the

kinetics of glucose transport in a 5-seconds 14C-glucose uptake

assay (Table S4). Under both growth conditions the transport

capacity decreased and the Km for glucose increased upon 4 h

nitrogen starvation.

Input data for the model were: (i) fluxes to the side-branches

that were fixed in the model (Table 1); (ii) external metabolite

concentrations that were fixed (Table 1); (iii) Vmax values of the

enzymes (Table S4 and S5 for in vivo-like and Vmax optimized

assays, respectively); and (iv) other kinetic parameters of the

enzymes and the glucose transporter (mostly taken from Teusink

et al. [12]; as specified in Table S1); glucose transport this study

(Table S4), and glyceraldehyde-3-phosphate dehydrogenase as

indicated in the text).

Model predictions were compared to (i) the independently

measured fluxes through hexose transport-hexokinase, phosphoglucose

isomerase-aldolase and glyceraldehyde-3-phosphate dehydrogenase-alcohol

dehydrogenase (see Figure 1); and (ii) the independently measured

glycolytic metabolite concentrations.

Glycolysis model
Our aim was to investigate whether the use of in vivo-like enzyme

assays rather than Vmax optimized assays would bring model

predictions closer to measured metabolite concentrations and

fluxes. The analysis was limited to glycolysis. Therefore the fluxes

to side branches as well as boundary metabolites, such as ATP

were fixed (Table 1). In its present form, the model is therefore not

suitable to study dynamics in which ATP is involved, like glycolytic

Author Summary

Baker’s yeast is widely applied in modern biotechnology,
for instance for production of heterologous protein or
biofuel. For such applications a thorough understanding of
the central energy metabolism of the bug is crucial.
Nevertheless, even for this well-known organism, attempts
to build models ab initio, based on independently
measured characteristics of the catalysts (the enzymes),
seldom gives reliable results. A key problem in this field is
that enzyme characteristics are often studied under non-
physiological conditions that do not resemble the
environment inside the cell. In this study we measured
the enzyme characteristics under physiological conditions
and assembled the results into a computational model of
yeast energy metabolism. We show that this simple trick
greatly improves the predictive value of the computational
model. This allowed us to predict correctly how yeast cells
adapt to nitrogen starvation, an industrially relevant
situation, in which remodeling of the proteome strongly
affects cellular energy metabolism.

Kinetic Modeling of Yeast Glycolysis
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oscillations. Furthermore, allosteric regulators that were missing in

the Teusink et al. [12] model, were added. A full set of

modifications is listed in Materials and Methods.

The new model reached a steady state close to the experimen-

tally determined steady state for all conditions studied (see

Figure 2). To achieve this, two additional assumptions were

needed. First, the expression of the two hexokinase isoenzymes,

hexokinase 1 and hexokinase 2 was not known. These isoenzymes have

a different Ki towards T6P (0.2 mM for hexokinase 1 and 0.04 mM

for hexokinase 2), which had a substantial effect on both the flux and

the intermediate metabolite concentrations. In Figure 2 the Ki that

fitted best was chosen for each condition (model results for both Ki

values are shown in Tables S7, S8, S9, S10). Second, the kinetic

parameters of glyceraldehyde-3-phosphate dehydrogenase were

redetermined under in vivo-like conditions. Especially the Km values

for glyceraldehyde 3-phosphate and NAD+ differed from those in

the Teusink et al. [12] model and affected the model predictions.

The measured Km for NAD+ was similar between the four

conditions (2.8460.15 mM as compared to 0.09 in the Teusink

et al. [12] model). The Km for glyceraldehyde 3-phosphate differed

however (0.39 at D = 0.35 h21 as compared to 1.6860.70 mM for

the other three conditions). In Figure 2 we used the Km for NAD+

of 2.84 mM and for glyceraldehyde 3-phosphate of 0.39 mM

under all conditions. Tables S7, S8, S9, S10 report the full set of

results with the glyceraldehyde-3-phosphate dehydrogenase pa-

rameters specific for each condition.

Thus we obtained a single model that can describe four different

steady-state conditions when the result of altered gene expression –

measured at the level of Vmax – is implemented.

The relative contribution of the in vivo-like Vmax values
and the allosteric regulation

Subsequently, we asked whether the good fit between model

and experiment could have been achieved by implementing either

the allosteric regulations alone or the in vivo-like Vmax values alone.

The dynamic behavior of the new model was evaluated (i) with the

in vivo-like Vmax values implemented in the original Teusink et al.

[12] model (hence without the allosteric regulation; Figure 3A–D);

(ii) with the Vmax values measured under conditions that were

optimized for each enzyme, but in the new model (with allosteric

regulation but without in vivo-like enzyme activities; Figure 3E–H);

and with the in vivo-like enzyme activities implemented in the new

model (with allosteric regulation; Figure 3I–L). The comparison

was made for the non-starved cells from the respiratory culture

(D = 0.1 h21). The metabolite concentrations measured under

these conditions were taken as the initial concentrations. In case of

a good fit, the calculated concentrations should therefore stabilize

at their initial values. In all cases, the concentrations of glucose 6-

phosphate and fructose 6-phosphate dropped rapidly and then

stabilized. Fructose 1,6-bisphosphate, however, increased contin-

uously up to very high levels when either the allosteric regulation

was lacking (Figure 3A–D) or when the Vmax values had been

measured under non-physiological conditions (Figure 3E–H).

Apparently, the lower part of glycolysis failed to keep up with

the flux through the upper part of glycolysis (Figure 1). This

resembles the ‘turbo’ phenotype described earlier [24], which has

been attributed to a lack of product inhibition of hexokinase and

phosphofructokinase. In earlier studies, however, not only fructose

1,6-bisphosphate accumulated, but also glucose 6-phosphate and

fructose 6-phosphate [25]. Only when both the allosteric

regulation and the in vivo-like Vmax values were implemented

(Figure 3I–L) a steady state was obtained.

Teusink et al. [12] attributed the turbo phenotype primarily to a

compromised feedback regulation of hexokinase. To test the role

of the positive feedforward by fructose 1,6-bisphosphate to

pyruvate kinase, this regulation was removed and otherwise the

model and its parameters were kept as in Figure 3I–L. The result

(Figure 3M–P) demonstrates that the feedforward regulation of

pyruvate kinase hardly affects fructose 1,6-bisphosphate itself, but

it is required for homeostatic regulation of the downstream

metabolites 3-phosphoglycerate, 2-phosphoglycerate and phos-

phoenolpyruvate.

Simulation of the response to an upshift of the
extracellular glucose concentration

So far we discussed steady-state conditions. A dynamic

response, however, contains much more information. Intracellular

metabolite concentrations measured during the dynamic response

of S. cerevisiae to a glucose pulse have been reported [26]. The

starting conditions of the experiment are close to the respiratory

growth condition (D = 0.1 h21) applied in the present study and

therefore we used our dataset to model the response to addition of

glucose. There are two differences between the experiment and

the model simulation. First, in the experiment a single dose of

Table 1. Measured fluxes into the side branches and concentrations of allosteric regulators and adenine nucleotides.

D = 0.1 h21 Non-starved D = 0.1 h21 4 h N-starved D = 0.35 h21 Non-starved D = 0.35 h21 4 h N-starved

Fluxes

Trehalose 22.1 22.2 1.0 21.9

Glycerol 17.5 24.9 21.3 21.5

Succinate 0.9 0 0.9 0.2

Regulators

ATP 5.00 3.92 4.29 4.70

ADP 1.00 0.81 1.29 1.09

AMP 0.30 0.25 0.44 0.37

Trehalose 6-phosphate 2.20 0.36 3.52 0.59

Fructose 2,6-bisphosphate 0.014 0.009 0.003 0.006

The fluxes to (if positive)/from (if negative) trehalose, to glycerol and to succinate are given in mM.min21 under the growth and starvation conditions studied. These
fluxes and metabolite concentrations were subsequently used as fixed parameters in the model described in this study. Positive values indicate fluxes away from
glycolysis. Data from [23].
doi:10.1371/journal.pcbi.1002483.t001

Kinetic Modeling of Yeast Glycolysis
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glucose was added at time zero, while the modeled increase of

glucose was sustained. However, within the time frame of the

experiment the extracellular glucose concentration did not

decrease significantly (most upper graphs in Figure 4). Second,

the starting condition of the experiment was a steady-state,

glucose-limited chemostat at a dilution rate of 0.05 h21 while the

simulation was based on the Vmax data obtained at 0.1 h21.

The model version of the non-starved respiratory cells was used

with a few modifications to meet the specific experimental setting.

The residual extracellular glucose concentration prior to addition

of glucose was approximately 0.2 mM [27]. Starting from a steady

state at 0.2 mM glucose, an upshift to 5 mM glucose at time zero

was simulated. The intracellular ATP, ADP and AMP ([28];

measured in a culture at D of 0.1 h21) and trehalose 6-phosphate

([27] measured in a culture at D of 0.03 h21) were also

implemented in the model. In agreement with experiments

[26,29], we decreased the (externally imposed) ATP concentration

by 50% at the onset of the glucose upshift, maintaining it constant

Figure 1. The glycolytic and fermentative pathway as they were modeled in this study. Metabolites are depicted in bold face, allosteric
regulators in regular, enzymes in italics and branching pathways underlined. GLCo: extracellular glucose, GLCi: intracellular glucose, G6P: glucose 6-
phosphate, F6P: fructose 6-phosphate, F16BP: fructose 1,6-bisphosphate, DHAP: dihydroxyacetone phosphate, GAP: glyceraldehyde 3-phosphate,
BPG: 1,3-bisphosphoglycerate, 3PG: 3-phosphoglycerate, 2PG: 2-phosphoglycerate, PEP: phosphoenolpyruvate, PYR: pyruvate, ACE: acetaldehyde,
EtOH: ethanol, HXT: hexose transport, HXK: hexokinase (EC 2.7.1.1), PGI: phosphoglucose isomerase (EC 5.3.1.9), PFK: phosphofructokinase (EC
2.7.1.11), ALD: aldolase (EC 4.1.2.13), TPI: triose-phosphate isomerase (EC 5.3.1.1), GAPDH: glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12),
PGK: 3-phosphoglycerate kinase (EC 2.7.2.3), GPM: phosphoglycerate mutase (EC 5.4.2.1), ENO: enolase (EC 4.2.1.11), PYK: pyruvate kinase (EC
2.7.1.40), PDC: pyruvate decarboxylase (EC 4.1.1.1), ADH: alcohol dehydrogenase (EC 1.1.1.1).
doi:10.1371/journal.pcbi.1002483.g001

Kinetic Modeling of Yeast Glycolysis
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thereafter. Since there was no data available for the intracellular

concentration of F26BP, we used 0.014 mM, as measured at a

dilution rate of 0.1 h21. The model was evaluated at a Ki value of

0.04 mM for the inhibition of hexokinase by trehalose 6-

phosphate, like the steady-state calculations for the corresponding

culture at D = 0.1 h21 (Figure 2).

Figure 2. Predictions from the model of yeast glycolysis compared to experimental data from [23]. Black bars represent the
experimental (6 SEM) data and white bars represent model predictions. The Ki of HXK for T6P was 0.2 mM for the non-starved cells from the
respirofermentative culture (D = 0.35 h21) and 0.04 mM for the other three conditions. Abbreviations as in Figure 1.
doi:10.1371/journal.pcbi.1002483.g002
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Figure 4 shows that the dynamic simulation mimicked the

experiment surprisingly well [26]. The upshift of the glucose

concentration caused an increase of the concentrations of glucose

6-phosphate, fructose 6-phosphate, and fructose 1,6-bisphosphate,

while the concentrations of 3-phosphoglycerate+2-phosphoglycer-

ate and phosphoenolpyruvate decreased and then rose slightly to

reach a new and different steady state.

Control and regulation of glycolysis during nitrogen
starvation

In previous studies we analyzed the distribution of regulation

between gene expression and metabolism upon nitrogen starvation

of the same cultures as studied here [22,23]. The upregulation of

the flux through glycolytic enzymes upon nitrogen starvation of

the respiratory culture (D = 0.1 h21) was predominantly regulated

by interaction of the enzymes with metabolites. In contrast, the

downregulation of the flux upon nitrogen starvation of the

respirofermentative culture (D = 0.35 h21) was mostly regulated

by gene expression. If we use the in vivo-like Vmax assay on which

the present paper is built, we obtain qualitatively the same results

as in the previous study (Figure 5 and Table S16) [23]. In this

analysis the metabolic regulation reflects the cumulative effect of

changes in metabolite concentrations on the flux through a specific

enzyme. Often these metabolites counteract each other [23]. We

therefore wondered if we could use the glycolysis model to relate

the observed flux to measured Vmax values (gene-expression

regulation) and metabolite concentrations.

At D = 0.35 h21 the glycolytic flux (when calculated at the level

of phosphoglucose isomerase-alcohol dehydrogenase) decreased by

16% upon nitrogen starvation. This was reproduced by the model

(14% decreased flux). Under these conditions the highest flux

control was exerted by the glucose transporter (flux control

coefficient 0.5 for the flux through upper glycolysis and 0.6

through lower glycolysis; Table S14 and S15). At the measured

52% decrease of the Vmax of the transporter (Table S4) this should

lead to a 26% decrease of the flux. Most of the remaining control

was exerted by hexokinase (0.5–0.6 before starvation), but since

the Vmax of hexokinase was down-regulated by only 12% this

contributes only 6% flux reduction. Since other enzymes exert

hardly any control, the changes in their Vmax do not contribute to

the decrease of the flux. The fact that the flux through

phosphoglucose isomerase altered not 26 but only 16% is at least

partly due to the reversal of the trehalose flux from trehalose

production in the non-starved cells to glucose-6-phosphate

production the starved cells.

Under this condition (D = 0.35 h21) metabolic regulation

mostly counteracts gene-expression or Vmax regulation, with the

highest negative metabolic regulation coefficient for phosphofruc-

tokinase (rm = 23.4). When we calculate the metabolic regulation

based on the changes in the measured metabolites and the rate

equation used in the model, we do not find this negative metabolic

regulation coefficient back. However, when we used the modeled

values of the metabolite concentrations, the regulation coefficient

was 23.8. This can be explained from the discrepancy between

the measured and modeled concentration of fructose 6-phosphate:

in the experiment it declined slightly, but in the model it increased

11-fold from 0.4 to 4.4 mM thus counteracting the decrease of the

flux through phosphofructokinase. Also for other enzymes with

strong metabolic regulation, i.e. hexokinase, phosphoglucose

isomerase, pyruvate kinase and pyruvate decarboxylase, the

metabolic regulation was only reproduced with the modeled

concentrations. Again this was caused by (sometimes subtle)

discrepancies between measured and modeled concentrations.

Nevertheless, from the calculations concerning hexokinase, it

became clear that trehalose 6-phosphate plays an important role in

the metabolic part of the regulation (rm,trehalose 6-P = 21.6).

For the respiratory culture (D = 0.1 h21) it is less straightfor-

ward to link the observed metabolic regulation to specific

metabolite concentrations. The reason is that the model

underestimates the observed increase in flux upon nitrogen

starvation. Again the glucose transporter exerts most of the flux

control (0.5–0.6 before starvation, 0.9–1.0 after starvation; Table

S12 and S13), but since the Vmax of the transporter diminished, it

tends to decrease rather than increase the glycolytic flux. The Vmax

of phosphoglucose isomerase, pyruvate kinase and pyruvate

decarboxylase increased, but as none of them exerted flux control,

this did not lead to a flux increase in the model. In reality there

may be a mechanism that confers flux control to pyruvate kinase

or pyruvate decarboxylase, which then would explain the increase

of the flux. Not knowing what caused the discrepancy of the flux

regulation between model and experiment, we are hesitant to

speculate on the precise nature of the metabolic regulation.

Discussion

In this study we have shown that realistic kinetic modeling of

biochemical pathways based on independently measured bio-

chemical parameters is possible, provided that parameters are

measured under physiological conditions and known allosteric

regulation loops are taken into account. Along these lines we have

improved the yeast glycolysis model of Teusink et al. [12], such that

it could be validated for a wider range of experimental conditions.

The key importance of physiological enzyme assays for kinetic

modeling of metabolism may seem trivial, but in practice it is not.

Until now the effect of in vivo-like parameters had never been

tested rigorously. Databases are full of parameters measured under

a variety of assay conditions, often far from physiological [30]. In

order to build metabolic computer models ab initio, we will need to

redetermine most of the kinetic parameters. It has been doubted if

it is possible at all to determine kinetic parameters with sufficient

accuracy to simulate the in vivo behavior of metabolic pathways

quantitatively [13]. A proposed solution is to simplify the kinetic

equations and obtain kinetic parameters by fitting them to the

experimentally determined fluxes and concentrations [31].

Although this is likely to yield an accurate description of pathway

behavior, it will provide little insight into the importance of the

biochemical interactions that give rise to such behavior. Moreover,

simplified and fitted models will predict pathway behavior

accurately for the conditions in which they have been fitted, but

they have no predictive power outside the experimental conditions

for which they were developed. The latter will require quantitative

Figure 3. The comparison of the model results of yeast glycolysis obtained with the original model of Teusink et al. [12] (panel A–D),
the model developed in this study (panel E–L) and the latter model without activation of pyruvate kinase by fructose 1,6-
bisphosphate (panel M–P; see text for model description). The data used in these simulations were from the non-starved cells of the glucose-
limited respiratory culture (D = 0.1 h21). The Vmax values were measured in either the in vivo-like assay medium (panel A–D and I–P) or in the assay
medium optimized for each enzyme (panel E–H). In the former case also the other glyceraldehyde-3-phosphate dehydrogenase parameters
measured under in vivo-like conditions were used; in the latter case the original glyceraldehyde-3-phosphate dehydrogenase parameters from
Teusink et al. [12]. The concentrations at time zero equal the measured intracellular concentrations. Abbreviations as in Figure 1.
doi:10.1371/journal.pcbi.1002483.g003

Kinetic Modeling of Yeast Glycolysis
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Figure 4. Simulation of a sudden upshift of the extracellular glucose concentration starting from a steady-state, aerobic, glucose-
limited chemostat culture at a dilution rate of 0.1 h21. The ATP concentration was decreased by 50% at the onset of the glucose upshift,
maintaining it constant thereafter. Experimental data are taken from [26] with permission. For details of the simulation, see text. A complete list of
parameters values used is given in Table S6 of the supporting information. All other parameters were kept the same as in the non-starved cells from
the respiratory culture (D = 0.1 h21).
doi:10.1371/journal.pcbi.1002483.g004
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insight in the non-linearities of the actual kinetics of the enzymes in

the network.

The original Teusink et al. [12] model failed to reach a steady

state if applied to glucose-limited cultures when they receive a high

glucose concentration. In such a situation the model - but not the

real cell - develops a ‘turbo’ phenotype: the ATP-stimulated

synthesis of fructose 1,6-bisphosphate in upper glycolysis persis-

tently exceeds its degradation in lower glycolysis. A negative

feedback loop at the beginning of the pathway prevents this ‘turbo’

effect [24]. In yeast glycolysis this role is (at least partially) fulfilled

by the inhibition of hexokinase by trehalose 6-phosphate [24].

While allosteric regulation of hexokinase was lacking in the

original model of Teusink et al. [12], we show that it is required

under the experimental conditions of the present study. In

particular at D = 0.35 h21, we could demonstrate that it was the

main regulator of hexokinase in vivo. In addition we show that the

feedforward activation of pyruvate kinase by fructose 1,6-bispho-

sphate is essential to avoid accumulation of metabolites in lower

glycolysis, particularly 3-phosphoglycerate, 2-phosphoglycerate

and phosphoenolpyruvate (Figure 3, cf. panels K and O). Studying

only one steady state, Teusink et al. [12] omitted the positive

feedforward regulation of pyruvate kinase by fructose 1,6-bispho-

sphate and thereby had pyruvate kinase maximally active. The

reason was that the measured fructose 1,6-bisphosphate concen-

tration was close to saturation of pyruvate kinase and was

supposed to have no effect. The positive feedforward regulation of

pyruvate kinase, however, does explain the dynamic downregu-

lation of 3-phosphoglycerate, 2-phosphoglycerate and phospho-

enolpyruvate after a glucose addition to a glucose limited

chemostat, because then fructose 1,6-bisphosphate increases from

a low to a high concentration [26,32]. Even though pyruvate

kinase has a low elasticity coefficient towards fructose 1,6-

bisphosphate under the steady-state conditions of the present

study (elasticity coefficients are in between 0.001 and 0.01), it is

apparently sufficient to shift the balance from an accumulation of

the metabolites of lower glycolysis towards a stable steady state of

that lower glycolysis, corresponding to the experimental data.

The model developed in this study was first applied to four

steady-state conditions. In spite of the differences in enzyme and

transport capacities, which were the input to the model, the fluxes

and metabolite concentrations in the model changed little between

the four conditions. However, the doubling of the concentration of

fructose 1,6-bisphosphate between D = 0.1 h21 and 0.35 h21

(non-starved) was reproduced correctly by the model (Figure 2

and Table S7and S9). Also the homeostasis of the concentrations

of 3-phosphoglycerate, 2-phosphoglycerate and phosphoenolpyr-

uvate between all four conditions was predicted by the model. The

above-mentioned activation of pyruvate kinase by fructose 1,6-

bisphosphate played an important role herein.

The new model described the dynamic response towards a

glucose upshift surprisingly accurately. The only exceptions were

the concentrations of glucose 6-phosphate and fructose 6-phos-

phate, which qualitatively matched the experiment, but the absolute

values of which were 5 times lower in the model than in the

experiment. We hypothesized that this might be due to the side

branches from glucose 6-phosphate towards trehalose and glycogen.

In the model these were fixed for lack of dynamic information, but

they are likely to change in time. We explored this hypothesis in the

model by modulating the branching fluxes and confirmed that the

calculated fructose 6-phosphate and glucose 6-phosphate could be

adjusted to their experimental values. However, the good fit for the

fructose-1,6-bisphosphate concentration was then lost, suggesting a

more complex mechanism in which regulation of phosphofructo-

kinase is also involved.

Figure 5. Distribution of the regulation coefficients of the various glycolytic enzymes after 4 h nitrogen starvation. The hierarchical
regulation coefficient rh reflects regulation of the flux by altered Vmax through the entire gene-expression cascade. The metabolic regulation
coefficient rm reflects regulation through interaction of the enzyme with altered metabolite concentrations. These values are based on the changes
in the in vivo-like Vmax values, experimentally determined changes in fluxes and the summation law for regulation (rh+rm = 1). See [22,23] for an
elaborate description of how to determine these regulation coefficients. Closed circles: D = 0.1 h21, Open circles: D = 0.35 h21. Each point represents
regulation of the flux through a different glycolytic enzyme.
doi:10.1371/journal.pcbi.1002483.g005
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In this study we fixed the ATP, ADP and AMP concentrations,

since quantitative kinetic information about ATP utilization was

lacking. Instead of variable and mutually dependent ATP, ADP

and AMP concentrations, we inserted the measured concentra-

tions as fixed parameters. This choice made the model unsuitable

to study phenomena in which ATP dynamics are involved, such as

glycolytic oscillations [33]. In the long run this is a limitation. For

the purpose of this study, however, to study in vivo regulation of the

glycolytic enzymes, it was the best option. ATP utilization consists

of many processes of which the kinetics are ill-known. Moreover,

the sum of ATP, ADP and AMP is not constant during the initial

dynamics of glycolysis [34]. Proper modeling of ATP metabolism

would have been a study in itself. Future modeling of the dynamics

of glycolysis, however, should involve ATP metabolism explicitly.

A pragmatic solution to deal with its complexity might be to fit

simplified kinetics to the branches of ATP utilization and

nucleotide metabolism, thus generating hybrid models in which

different levels of detail and explanatory power are combined [35].

The same arguments apply to other side branches.

The Vmax values that were used as input to the model were

measured at a single pH of 6.8. This was the pH measured in the

cytosol of respiratory cells (D = 0.1 h21) [21]. After glucose

addition to a glucose-limited chemostat, however, the intracellular

pH drops immediately to approximately 5.3, but after 10 seconds

the pH increased to pH 5.8 [36]. This may affect the equilibrium

constant of the reaction in which protons are involved, i.e.

glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydro-

genase. When the Keq of alcohol dehydrogenase was changed 10-

fold to correct for the pH drop of one unit (from 6.8 to 5.8) the

model simulation showed a only a slight difference. In contrast, a

10-fold decrease in the Keq of glyceraldehyde-3-phosphate

dehydrogenase led to accumulation of the intermediates in upper

glycolysis. However, besides a change in Keq, the Vmax and the Km

values of the enzymes could also change by a change in pH. The

pKa values of some of the intermediate metabolites, e.g.

glyceraldehyde 3-phosphate and fructose 6-phosphate, are around

6.5, which implies that a drop in intracellular pH should affect the

apparent affinity of the enzymes towards these metabolites. In

addition, the isoelectric point of the glycolytic enzymes is in the

range of 5–8. Thus a change in pH may affect the protonation of

the enzymes, which in principle could alter their Vmax as well as

their Km values. We did not observe changes in Vmax of glycolytic

enzymes in a pH range from 6.5 to 7 (data not shown).

We have to stress that even the improved model of yeast

glycolysis does not match the experimental fluxes and metabolite

concentrations perfectly. The key progress of this study is that

being precise about allosteric regulation and in vivo-like assay

conditions improves the match between experiment and model

substantially, and for a number of different conditions. For an even

more stringent test of the paradigm that in vivo metabolism is

understandable in terms of in vitro biochemistry, the obvious next

step is to reconsider all kinetic parameters, including Km and Ki

values. Apparent Km and Ki values depend strongly on binding

equilibria of metabolites to protons and other cations in the cell.

Wu et al. took such ion-binding equilibria into account and showed

that it improved model predictions of mitochondrial bioenergetics

substantially [37,38]. The protonation state and conformation of

the active site of the enzyme in the intracellular environment will,

however, be equally important for the affinity of a metabolite for

an enzyme. For the short-term we therefore suggest that the

redetermination of affinity constants under in vivo-like conditions

will be unavoidable. The next stage will then be the character-

ization of pure enzymes and insertion of the properties of

isoenzymes into integral models. This requires quantitative

proteomics of isoenzymes as well as a strict control of enzyme

quality during purification, and has been beyond the scope of this

study.

The Silicon Cell philosophy is to construct models of well-

defined pathways, which should subsequently be coupled to each

other to expand the network [39]. For this approach to be

successful, the use of in vivo-like enzyme assay conditions will be

essential. This outcome may not be surprising, yet we could not

have anticipated that it would have been sufficient to get such a

good description of glycolytic dynamics. We must be prepared that

other pathways may depend on more complex regulation than

yeast glycolysis under the conditions of study. In cases where, for

instance, enzyme-enzyme complexes, channeling of metabolites or

rapid posttranslational modifications determine the pathway

dynamics, we will need new means to analyze the in vivo

biochemistry quantitatively. This will be the next challenge for

molecular systems biology.

Materials and Methods

Growth and nitrogen-starvation conditions
The haploid, prototrophic Saccharomyces cerevisiae strain

CEN.PK113-7D (MATa, MAL2-8c, SUC2) was cultivated in an

aerobic, glucose-limited chemostat (1 l laboratory fermentor,

Applikon) as described in detail by Van Hoek et al. [40].

Chemostat cultures were fed with defined mineral medium [41]

in which glucose (42 mM) was the growth-limiting nutrient. Yeast

cells were grown under either respiratory or respirofermentative

conditions at dilution rates of 0.1 and 0.35 h21, respectively.

For the nitrogen-starvation experiments the same defined

mineral medium was used as for the chemostat culture, except

that it lacked ammonium sulfate and contained an excess of

glucose. The addition of glucose served to prevent additional

starvation for the carbon source. Yeast cells harvested from steady-

state chemostats were washed with ice-cold starvation medium and

resuspended in starvation medium. Cells were brought back in a

new fermentor in batch mode (start volume was around 1 litre) at

otherwise the same conditions as during chemostat cultivation (for

a detailed description see [23]).

Glucose-transport assay
Zero-trans influx of 14C-labeled glucose was measured in a 5-s

uptake assay as described by Walsh et al. [42] with the

modifications of Rossell et al. [43] at 30uC. The range of glucose

concentrations was between 0.25 and 225 mM. Irreversible

Michaelis-Menten equations without product inhibition were

fitted to the data by nonlinear regression.

Vmax measurements under in vivo-like assay conditions
Cell-free extracts were prepared freshly by the FastPrepH

method described in Van Eunen et al. [21]. Vmax assays were

carried out with the prepared extracts via NAD(P)H-linked assays,

at 30uC in a Novostar spectrophotometer (BMG Labtech) as

described in detail in [21].

The standardized in vivo-like assay medium [21] contained

300 mM potassium, 245 mM glutamate, 50 mM phosphate,

20 mM sodium, 2 mM free magnesium, 5–10 mM sulphate,

and 0.5 mM calcium. For the addition of magnesium, it was taken

into account that ATP, ADP, NADP and TPP bind magnesium

with a high affinity. The amount of magnesium added equaled the

summed concentration of these coenzymes plus 2 mM, such that

the free magnesium concentration was in slight excess of 2 mM.

Since the sulfate salt of magnesium was used, the sulfate

concentration in the final assay medium varied between 2.5 and
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10 mM. The concentrations of the substrates and coupling

enzymes for each individual enzyme assay are given in the

supporting information Text S1.

Model description
The glycolytic model of Teusink et al. [12] was the starting point

for this study. The model as it was used here, is depicted in Figure 1.

Starting from the original Teusink et al. model [12] the following

modifications were made, based on new insights and in order to

tailor the model to the experimental conditions of this study:

1. The Vmax values of all glycolytic and fermentative enzymes and

the Vmax and affinity constant of glucose transport were measured

in extracts of cells grown under the growth and starvation

conditions of this study. In Van Eunen et al. [23] they had been

measured under assay conditions optimized for each enzyme;

here we report on in vivo-like assays (see above) for the same

biological samples (Table S4). For most of the remaining kinetic

parameters we have used the values of Teusink et al. [12]. The

only exceptions were the Km values of glyceraldehyde-3-

phosphate dehydrogenase. In vivo-like kinetic data of glyceralde-

hyde-3-phosphate dehydrogenase used in the model is given in

Table S4. If not mentioned otherwise the glyceraldehyde-3-

phosphate dehydrogenase parameters and the Vmax values

measured under in vivo-like assay conditions were used.

2. In the original Teusink et al. model the branching fluxes to

trehalose and glycogen were fixed at their measured values.

Under the conditions described here, the glycogen flux was

negligible (data not shown) and therefore not included. The

trehalose, glycerol and succinate fluxes were fixed at the values

measured in our study (Table 1). To prevent a redox imbalance

in the model we did not fix the flux to acetate. Instead it was

made proportional to the acetaldehyde concentration with a

rate constant of 0.5 min21.

3. In the original model [12] the net ATP produced by glycolysis

was consumed in a lumped reaction of ATP utilization. This

resulted in variable and mutually dependent ATP, ADP and

AMP concentrations. Since information about the kinetics of

ATP utilization was lacking and moreover not the focus of this

study, we decided to remove the ATP utilization from the

model and instead inserted the measured concentrations of

ATP, ADP and AMP as fixed parameters.

4. The known inhibition of hexokinase by trehalose 6-phosphate

had not been included in the original model [12]. Yet, it is

thought to play an important role in the regulation of

glycolysis, particularly to prevent an imbalance between the

upper and lower part of the pathway [24]. Trehalose 6-

phosphate is an inhibitor of hexokinase that competes with its

substrate glucose. Different Ki values for the different

hexokinases of yeast have been reported. Glucokinase was

not inhibited by trehalose 6-phosphate, while the Ki values of

hexokinase 1 and 2 were 0.2 mM and 0.04 mM, respectively

[44]. Since the distribution of the isoenzymes is not known for

the experimental conditions studied here, both Ki values were

used as indicated in the text. The kinetic equation of

hexokinase was modified to the following:

vhxk~

Vmax,hxk
: Glci(t)

Km,hxk,Glci

: ATP

Km:hxk,ATP

{
G6P(t):ADP

Km,hxk,Glci
:Km,hxk,ATP

:Keq,hxk

� �

1z
Glci(t)

Km,hxk,Glci

z
G6P(t)

Km,hxk,G6P

z
T6P

Ki,hxk,T6P

� �
: 1z

ATP

Km,hxk,ATP

z
ADP

Km,hxk,ADP

� � ð1Þ

5. Finally, the Km of pyruvate decarboxylase in the original model

(4.3 mM) [12] had been obtained from Boiteux and Hess [45]

based on an intracellular phosphate concentration of 25 mM.

However, we have measured the pyruvate decarboxylase

activity at a phosphate concentration of 50 mM, which is

likely to be the intracellular concentration under the growth

conditions studied here [29]. Based on the data of Boiteux and

Hess [45] we calculated a Km value of pyruvate decarboxylase

for pyruvate of 6.36 mM at 50 mM phosphate and the new

value was inserted in the model.

6. The known activation of pyruvate kinase by fructose 1,6-

bisphosphate had not been included in the original model [12].

However, it might play an important role, especially in cases

where fructose 1,6-bisphospohate is below the concentration

for which the activation of pyruvate kinase is at a maximum.

We have implemented this allosteric regulation of pyruvate

kinase according to the rate equation of Rizzi et al. [11], in

which the activation by fructose 1,6-bisphosphate depended on

the ATP concentration.

vpyk~

Vmax,pyk
: PEP(t)

Km,pyk,PEP

: PEP(t)

Km,pyk,PEP

z1

� �npyk{1

L0,pyk
:
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z1

F16P(t)

Km,pyk,F16P

z1

0
BB@

1
CCA

npyk

z 1z
PEP(t)

Km,pyk,PEP

� �npyk

:

ADP

ADPzKm,pyk,ADP

ð2Þ

All experimental data were converted to intracellular units

(mM?min21 for rates and mM for concentrations) by assuming

a yeast cytosolic volume of 3.75 ml.mg cell protein21 [46]. The

final model including all equations and the parameters that

were constant for the four conditions studied is given in the

supporting information material Text S2, S3 and Table S1, S2,

S3, S4, S5, S6.
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