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production†
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Biomedical research and biotechnological production are greatly benefiting from the results provided by

the development of dynamic models of microbial metabolism. Although several kinetic models of

Lactococcus lactis (a Lactic Acid Bacterium (LAB) commonly used in the dairy industry) have been

developed so far, most of them are simplified and focus only on specific metabolic pathways. Therefore,

the application of mathematical models in the design of an engineering strategy for the production of

industrially important products by L. lactis has been very limited. In this work, we extend the existing

kinetic model of L. lactis central metabolism to include industrially relevant production pathways such as

mannitol and 2,3-butanediol. In this way, we expect to study the dynamics of metabolite production and

make predictive simulations in L. lactis. We used a system of ordinary differential equations (ODEs) with

approximate Michaelis–Menten-like kinetics for each reaction, where the parameters were estimated

from multivariate time-series metabolite concentrations obtained by our team through in vivo Nuclear

Magnetic Resonance (NMR). The results show that the model captures observed transient dynamics

when validated under a wide range of experimental conditions. Furthermore, we analyzed the model

using global perturbations, which corroborate experimental evidence about metabolic responses upon

enzymatic changes. These include that mannitol production is very sensitive to lactate dehydrogenase

(LDH) in the wild type (W.T.) strain, and to mannitol phosphoenolpyruvate: a phosphotransferase system

(PTSMtl) in a LDH mutant strain. LDH reduction has also a positive control on 2,3-butanediol levels.

Furthermore, it was found that overproduction of mannitol-1-phosphate dehydrogenase (MPD) in a

LDH/PTSMtl deficient strain can increase the mannitol levels. The results show that this model has

prediction capability over new experimental conditions and offers promising possibilities to elucidate the

effect of alterations in the main metabolism of L. lactis, with application in strain optimization.

Introduction

Lactococcus lactis is a fermentative bacterium, known for its role
in the manufacture of dairy products like cheese and butter-
milk. The small genome size and a simple metabolism have
rendered it an attractive model to implement strain design
strategies for the production of added-value compounds, such
as the polyols mannitol and 2,3-butanediol (reviewed in ref. 1–3).

While mannitol has a wide range of health-promoting and
protective effects,4,5 2,3-butanediol is an important chemical
feedstock with a wide range of applications.6,7 Therefore, there
is strong interest in the optimization of the industrial produc-
tion of these compounds.

Mathematical modeling of biochemical networks allows the
integration of experimental knowledge into a computational
framework to support hypotheses and derive new predictions
that can be tested. The predictive capability provided by these
models is fundamental to support biomedical research and
improve biotechnology production.8,9 In particular, the field of
metabolic engineering10 takes advantage of mathematical models
of cellular mechanisms, in order to discover optimal sets of genetic
manipulations for the design of microbial strains that efficiently
produce compounds of industrial interest.11,12 In this regard, a
systems biology approach can provide promising tools for LAB
metabolic engineering.13 One of the most common approaches
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for modeling biological networks is based on systems of ordinary
differential equations (ODEs). This kind of models represents a
powerful tool to understand interesting properties of the cellular
mechanisms and enables the design of new biological pathways.14,15

In the last years, there have been a growing number
of mathematical models in the literature of L. lactis, such
as L. lactis genome-scale model and kinetic models (for a
detailed review, see ref. 13).

Although genome-scale models have a clear advantage in
terms of scalability when compared to dynamic models, they
contain several limitations. Besides disregarding transient
behavior to predict dynamic responses to external perturbations,
they do not take into account enzymatic regulation effects and
metabolite concentration. To date, some kinetic models have been
developed, which include the study of the enzymatic regulation16,17

and metabolic flux analysis.7,18 In an earlier kinetic model,7

the authors proposed a dynamic model of L. lactis pyruvate
branches using available in vitro enzyme kinetic data rather
than parameter fitting.

Although some useful dynamic models have been built in
this way, the kinetic parameters should be used with care, since
enzyme characterization is often not performed under physio-
logical conditions or only for few parameters,19 restricting the
in silico applicability.20,21 Furthermore, this earlier model7

ignores crucial metabolic pathways. Voit and co-workers16

constructed an approximate power-law kinetics model of
L. lactis glycolysis with few kinetic parameters identified by
in vivo metabolite time-series data. Another glycolysis L. lactis
model using a similar approach but with lin-log kinetics was
proposed by del Rosario et al.22 A limitation of these models is
that power-law and lin-log kinetics do not reflect clear mapping
to biochemistry. Vinga et al.23 reconstructed a dynamic glyco-
lysis model of L. lactis based on the dynamic budget theory.
One disadvantage of this approach is that no specific biochemical
mechanisms are incorporated, and therefore it is at a much
higher abstraction level and as such unable to identify targets for
strain design. Oh et al.18 constructed a detailed glycolytic model
of L. lactis using kinetic rate equations from yeast or other species
models. However, no time-course simulation and validation were
performed. A recent work24 presented an (ODE)-based model, but
some of the reactions in this glycolysis model are represented as
lumped versions of some important biosynthetic pathways and
aggregate key glycolysis species to reduce complexity.

Despite the fact that this field has attracted considerable
attention, most of the available models are very generic and
do not take into account industrially important products for
other metabolic engineering design studies, e.g. mannitol and
2-3-butanediol, thus severely restricting their usage in this context.

In this work, we substantially extend an existing glycolysis
kinetic model (Levering et al.24), by including the 2,3-butanediol
and mannitol biosynthetic pathways, and the branches to ethanol
and acetate. Enzyme kinetics was modeled with approximate
convenience kinetics with product sensitivity and parameterized
using more experimental in vivo NMR data. The model was then
validated for a wider range of conditions to make predictions
about the dynamic behavior of L. lactis. Finally, our model

was applied to finding new potential targets for production of
2,3-butanediol and mannitol in the system.

Methods
Network structure modification and extension

The metabolic network was reconstructed for the identification of
the main L. lactis metabolite dynamics. The previously published
model of Levering et al.24 was the starting point for the network
reconstruction, which was expanded by using a large number of the
pathway reactions taken from the literature.7,25 The network struc-
ture in this work is depicted in Fig. 1. Abbreviations of metabolites
and reaction names can be found in the corresponding list. We
updated and extended the original model24 to describe the relevant
products pathways by changing or including the following: (i)
reactions catalyzed by phosphoglucose isomerase (PGI), pyruvate
formate lyase (PFL), a-acetolactate synthase (ALS), 2,3-butanediol
dehydrogenase (BDH) and mannitol-1-phosphate dehydrogenase
(MPD) have been modeled as reversible reactions and the remaining
new equations as irreversible reactions; (ii) allosteric regulation
(inhibition) of MPD by fructose 6-phosphate ( f6p);26 (iii) division
of the mixed-acid branch into acetate and ethanol production
pathways – for simplicity acetyl-P and acetaldehyde were not
considered as in ref. 25; (iv) inclusion of mannitol metabolism
as described in ref. 25 and 27; (v) incorporation of acetoin and
2,3-butanediol production pathways; (vi) the f6p intracellular meta-
bolite and the corresponding PGI reaction were added; (vii) allosteric
regulation (inhibition) of alcohol dehydrogenase (AE) by atp28 and
(viii) allosteric regulation (inhibition) of PFL by g3p. The complete
ODEs are listed in Additional File 1 (ESI†). It contains a total of
26 metabolites and 15 internal reactions, including enzymatic
effectors (7 inhibitors and 3 activators) and 6 exchange reactions.

Model formulation, assumptions and parameterization

For modeling we used a set of ODEs with approximate Michaelis–
Menten-like kinetics (convenience kinetic rate expression
proposed in ref. 29 with product sensitivity) for each transporter
and enzyme-catalyzed reaction (only for ATPase reaction a Hill
equation is used), with initial guess parameters from the
previous L. lactis model24 and literature search (see Additional
File 2, ESI†). This enzyme kinetics requires less kinetic informa-
tion than a full description of the reaction, accommodates
various reaction stoichiometries and describes enzyme regulation.
For example, in the case of a regulated reaction A 2 2B activated
by C and inhibited by D, the convenience rate is formulated
with the following structure:

rj ¼
KD

i

½D� þ KD
i

½C�
½C� þ KC

a

V j
max

½A�
KA

m

� V j
max

K
j
eq

½B�2

KA
m

1þ ½A�
KA

m

� �
þ 1þ ½B�

KB
m

þ ½B�
KB

m

� �2 !
� 1

where KA
m and KB

m are Michaelis–Menten constants, V j
max is

the maximal rate constant of reaction rj, and KD
i and K C

a

represent inhibition and activation constants, respectively.
The convenience kinetic rate law proposed in ref. 29 is based
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on the random order binding Michaelis–Menten equation and
can be applied to any reaction stoichiometry. To take into
consideration the enzymatic regulatory effects (inhibition and
activation), we adopted the multiplication by a regulatory factor
as suggested in ref. 30. The kinetic rate equations for each
reaction are given in Additional File 4 (ESI†). Prior to parameter
fitting, we specified the initial metabolite and parameter
values concentrations as possible based on literature data
and experimental measurements (see Additional File 3 and 2
(ESI†), respectively). In all simulations, we assumed that the
equilibrium constants (Keq) and Hill coefficient parameters (n)
are known, for which previously reported values are used (see
Additional File 2, ESI†), which were held constant and thus the
number of unknown parameters was reduced from 112 to 102.
The model was constructed and simulated in the COPASI
software version 4.831 using the LSODA ODE solver.

After selecting appropriate reaction kinetics, we calibrated
all the parameters system by collective fitting to in vivo NMR
metabolite data (time series) from L. lactis MG1363 resting
cells.32 The binding affinity constants (Michaelis–Menten con-
stants, inhibition and activation constants) and rate constants
are estimated by a global fit using the time series metabolite
data. Since the experimental data for the initial metabolite
concentration of adp, atp, nadh, phoshornolpyruvate ( pep) and
1,3-diphosphoglycerate (bpg) were not measured experimentally
for L. lactis, we estimated this initial metabolite concentration
from the model together with the kinetic parameters. The
remaining initial metabolite concentrations were set at their
measured values. Upper and lower bounds for the parameters
were constrained to values within [0.01, 100] mM for Michaelis–
Menten constants (Km) and [0.001, 1000] mM s�1 for maximal
rate constants (Vmax), except for the optimized initial metabolites,

Fig. 1 Schematic network representation of the central metabolism of L. lactis. These include the glycolysis (light blue box), mannitol metabolism (pink
box), phosphate exchange (light purple box), ATPase pathway (yellow box) and pyruvate metabolism (beige box). Circular nodes represent metabolites
and italic names of enzymes/reactions. Red metabolites (close red circle-ends) are inhibitors and blue metabolites (close blue circle-ends) are activators.
The arrows indicate the reaction reversibility. Abbreviations of metabolite and reaction names are given in the abbreviations list.
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which are assumed to be between [0, 109] mM. To estimate the
kinetic parameters we used first the algorithm of fitting based
on the evolutionary programming (EP) method implemented in
COPASI,31 where the number of generations was set to 2000 and
a population size of 100 models. Subsequently, this solution was
then used as the starting value and the model was additionally
fitted with the local optimization method Hookes and Jeeves (HJ)
algorithm with standard settings also from COPASI. In this way,
we reduced the probability of missing the global minimum. To
make sure that this method does not converge to a suboptimal
solution, ten optimization runs were performed.

The experimental data used for model verification purposes
were also taken from previous work by members of our team.32

Parameter sensitivity control analysis

To assess the importance of various enzymes/reactions on the
production of key products (e.g. mannitol) we used global
sensitivity analysis of control coefficients, describing how each
metabolite production changes in response to changes in the
maximal activity (Vmax values) of a reaction in the model.

A sensitivity testing process consists of the analysis of the effect
of parameter uncertainty on the model outcome. Common applica-
tions of parameter sensitivity analysis include model reduction,33

robustness analysis34 and identification of control points.35

A classical approach of sensitivity analysis for biochemical
reaction systems described by ODEs is the so-called metabolic
control analysis (MCA).36 However, this analysis is carried out
to assess only systemic steady state properties (i.e. influence of
the steady state concentrations or fluxes in the models by
infinitesimally small changes in individual reactions of the
system) and is only valid for small perturbations of one para-
meter around a specific operating point.

In this work, global sensitivity analysis was performed for
the wild type and two mutant strains (LDH and LDH/PTSMtl)
using the SBML-SAT software package37 for MATLAB. These two
mutant strains were simulated by multiplying the optimized
values of the appropriate rate equations (Vmax of LDH and
PTSMtl) by 0.01 (for a 99% decrease in enzyme activity) and by zero,
respectively. The method used for this analysis was partial rank
correlation coefficient (PRCC) analysis, which is routinely applied to
systems with a nonlinear relationship between the systems inputs
and outputs.38 In our work, N equidistant sampling points for each
kinetic parameter (Vmax) subject to sensitivity analysis were varied in
the range of 0.01–100� of its reference value (fixing all other
parameters at their reference values) with N = 5000 simulations,
using an M (number of parameters subject to variation) dimen-
sional Latin hypercube and the model output type integrated
response (i.e. total amount of state variable during the time course)
for each analysis was selected. More details and the PRCC method
implementation in the SBML-SAT tool could be found in ref. 37.

Results and discussion

The following sections describe the extension of the previously
glycolysis L. lactis model proposed by Levering et al.,24 enriched

with knowledge from published studies25,27 and in vivo time-
series data, which was further used for parameterization and
validation. We then performed sensitivity analysis of global
perturbation to identify which enzymes/reactions had large
impacts on the overall mannitol and 2,3-butanediol production.

Analysis of the model

Model parameterisation – comparison of in vivo versus in
silico dynamics. The reconstructed L. lactis network used in this
work (illustrated in Fig. 1) has 26 metabolites, 15 internal and 6
exchange reactions. The model includes the glycolysis, pyruvate
and mannitol metabolism, phosphate exchange as well as the
ATPase pathway.

After this building step, the kinetic model was parameter-
ized de novo to fit the experimental time-series data for meta-
bolite concentration after addition of a glucose pulse of 40 mM
(see Methods for more information). Since most of the kinetic
parameters have been estimated based on in vitro studies as
given in Additional File 2 (ESI†), the model parameters had to
be re-estimated based on the measured in vivo metabolites
data. A total of eight time-courses of metabolite profiles, of
which 2 are extracellular (glucose and lactate) and 6 intracellular
( pep, nadh, nad, pi, fbp and atp), were used for this fitting. These
experimental data consist of metabolite profiles from the central
carbon metabolism of the bacterium L. lactis, obtained using
in vivo NMR under anaerobic conditions.32 The experimental
time series data with 40 mM extracellular glucose pulse and the
corresponding model fittings are shown in Fig. 2, where the
results for ten independent runs of the optimization method (see
the Methods section for details) are shown.

Although each model describes the experimental data
relatively well, they differ from each other in the kinetic
parameter set. On the basis of previous studies with similar
complexity,39,40 this illustrates an eventual identifiability issue.
In fact, the estimated kinetic parameters in complex biochemical
models are often not unique given different sets of parameter
values that can fit to time series data equally well with identical
dynamic behavior.41 In addition, the objective function contains
multiple local minima.42 Therefore, to enable an exploration of the
search space, the optimization procedure was performed ten times
with the optimization method (EP + HJ). We have considered
the global and local optimization methods sequentially because
this type of hybrid approach has proven to have key advantages
in non-linear biochemical complex models.43,44

In general, all these model fits exhibit, upon simulation, a
very good agreement with the measured time course data,
showing that the combined global and local optimization
approach is an effective means to optimize parameters. It is also
possible to observe an instantaneous decrease in pi concen-
tration and an instantaneous increase in fbp concentration
which the kinetic model is able to reproduce remarkably well.
This phenomenon ( fbp accumulation) was also reported in the
literature before.45 The optimized metabolite concentrations
and the fitted kinetic parameter values obtained from one of
the best optimization runs (red line in Fig. 2) can be found in
Additional Files 3 and 2 (ESI†), respectively. Although some of
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the kinetic parameter values are maybe unrealistic, the main
purpose of the model is to help understand what is not yet
known about the behavior of the system.

The analysis of the variance of the estimated kinetic parameter
sets over the ten simulations performed (shown in Additional Files 5,
ESI†) shows that the ranges of some parameters values are signifi-
cantly high. This means that some model parameters are non-
identifiable, probably due to the ‘‘sloppy’’ nature of the system,46

which is a typical feature of complex models with time-series collec-
tive fits, even when a complete set of time-resolved measurements of
all species are available. However, it is legitimate to draw conclusions
based on this type of model,46 because this problem is mitigated by
the fact that the structure of mechanistic models already tightly
constrains the possible dynamic behaviors. We therefore considered
all fits in the following analysis in order to ensure that some
properties of the model are conservative to these uncertainties.

Model verification: dynamic response to different stimuli.
To ascertain whether biologically meaningful information can
be obtained, we validated the model against independent data
sets (i.e. different glucose pulse conditions), which were not

used before in the parameter fitting procedure. In other words,
we tested the predictive properties of our L. lactis model by
determining whether different conditions could be predicted
without any re-fitting procedure. We started with model valida-
tion by changing the level of glucose pulse to 20 mM and 80 mM
and carried out simulations (Fig. 3 and 4, respectively).

The results show the experimental and simulated dynamics
after a 20 mM (only four metabolites were measured) and
80 mM extracellular glucose pulse, obtained with the ten
independent runs. As shown in Fig. 3 and 4, the simulation
results based on our models are highly consistent with the
experimental data (without further fittings of any parameters),
namely for the prediction of fbp accumulation around 50 mM, a
value that corresponds to a saturation phenomenon for the
wild type strain. Only the time course of the simulated
g6p metabolite for the glucose pulse with 20 mM (Fig. 3) and
atp for a 80 mM bolus glucose (Fig. 4) deviated from their
experimentally values, but the dynamic behaviors are qualita-
tively similar. The remaining simulations describing the experi-
mental data enable the prediction of robust dynamic behavior

Fig. 2 Time courses of experimental data used for model parameterization and corresponding model fits with 40 mM extracellular glucose pulse for
eight variables in L. lactis MG1363. Ten fits for each metabolite are shown. In all cases the dotted lines indicate the experimental data and the continuous
lines are the simulated dynamics. The red line refers to the simulation for the initial metabolite concentration and estimated kinetic parameter values
listed in Additional File 3 and 2 (ESI†), respectively. Only the simulation results for the metabolite concentrations experimentally available are shown for
comparison. The remaining metabolite simulation results are given in Additional File 6 (ESI†).
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independent of the parameter set. These results demonstrate
that our kinetic model captures well the main metabolism in L.
lactis and gives us confidence for the generation of further
predictions even under different conditions.

Perturbation analysis of the model. One major advantage of
kinetic models is their capability to assist in developing in silico
strategies, thus increasing the success rate of metabolic engineering
design. In this manner, the overexpression or underexpression

of an enzyme can be simulated by increasing or decreasing,
respectively, the maximal activity (Vmax) of the enzyme in question.
In this work, after construction and a first validation of the model
we have simulated perturbed conditions by sensitivity analysis to
detect potential targets that have large influences on the valuable
2,3-butanediol and mannitol products.

In order to address the effects of changes of the parameter
(Vmax) values for every reaction upon the transient dynamics of

Fig. 3 Time courses of experimental data (squares) and corresponding simulated dynamics (lines) for 10 independent runs with 20 mM extracellular
glucose pulse for the wild type strain. The simulation having one of the best optimization runs is indicated by the red line.

Fig. 4 Experimental time-course data (circles) and simulation results (lines) for 10 independent runs with 80 mM extracellular glucose pulse for the wild
type strain. The simulation having one of the best optimization runs is indicated by the red line.
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our system, we obtained the sensitivity of time integrated
response coefficients (IRCs) by global sensitivity analysis on
the model, as described in the Methods section. This approach
allowed us to explore the effect of simultaneously changing the

kinetic parameters and considered the full trajectory
rather than just steady-state conditions. These properties are
especially important in the case of glycolysis in L. lactis, as
they provide pointers to identify enzyme targets for

Fig. 5 Global sensitivity analyses of concentration integrated response coefficients (IRCs) to variations in Vmax for the wild type strain. (A) Effects of
changes in Vmax values of the enzymes/reactions on the main state variable under the given conditions. The colour of a matrix element Sij defines the type
of impacts of an enzyme/reaction i on a state variable (metabolite) j. (B) The bar graphs correspond to two of these state variables (2,3-butanediol and
mannitol_Ext).
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strain optimization that have large impacts on mannitol and
2,3-butanediol production.

Disruption of LDH in L. lactis resulted in production of
mannitol.47,48 Accumulation of mannitol as an end-product of
glucose fermentation was achieved by combining the LDH
deletion with inactivation of the mannitol PTS.25 Overexpres-
sion of MPD in an LDH deficient strain led to an increase in
mannitol production.49 The major breakthrough in mannitol
production originated from combining overproduction of MP
with MPD in a LDH/PTSMtl.27,50

To make a second validation of the model, we implemented
sensitivity analysis. The matrix of sensitivity control coefficients
that shows the response of all the metabolites by simulta-
neously varying all the reactions/enzymes in this system is
shown in Fig. 5A. The sensitivity values (Sij) are in the range
of �1 and 1. Here we focus on sensitivity analysis to analyze
potential targets (control parameters) of the metabolites which
are reported in the literature; the same analysis could be
performed for any metabolite in the model (see Fig. 5A). For
the sake of simplicity, we restrict this analysis to one of the best
fits based on the objective function (red line in Fig. 2), but
consistent results (distribution of control in a negative or
positive way) were obtained for the other fits (see Additional
file 8, ESI†), which illustrates the robustness of the model. This is

in agreement with an exploratory study performed by Nikerel
et al.51 that concludes that the underlying control structures
behavior was robust against non-identifiable parameters used.
The LDH enzyme exerted a substantial negative sensitivity over the
acetoin production, i.e., decreasing its Vmax increased acetoin
quantity. This result was in accordance with experimental observa-
tions and in silico modeling predictions performed by Hoefnagel
et al.7 The glycolytic enzymes had positive control over lactate
production. As expected, the ACK reaction had a significantly
negative control over acetyl-CoA (acetCoA) production. Acetate
production in L. lactis was diminished with an excessive PFK
overexpression, a result indicating that the fbp concentration is
increased over the control of PFK enzyme. Furthermore, the over-
expression of PFK exerted a positive control over lactate produc-
tion, as previously described in ref. 52. The formate level was
found to be very sensitive to the LDH reaction in L. lactis in
agreement with ref. 53. Apart from these, the atp component
responded substantially and negatively to changes in the ATPase
consumption rate. It is not surprising that the control coefficients
for the adp level were complementary to those for atp.

Mannitol and 2,3-butanediol are economically valuable
metabolites and, given their potential in health and industrial
applications, were the main focus of the analysis to find
potential targets in L. lactis. Sensitivity analysis is dependent

Fig. 6 Concentration response coefficients from global sensitivity analyses to variations in Vmax for an LDH deficient strain. The response coefficients in
Fig. 5B are recalculated as described in the Methods section. The effects of changes in Vmax values of the enzymes on two state variables (2,3-butanediol
and mannitol_Ext) were analyzed in detail. The bar graphs correspond to two of these state variables (2,3-butanediol and mannitol_Ext).
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on the parameter space which varies from fit to fit. Using our
collection of fits, we calculated the control coefficients for every
model and every strain (W.T., LDH and LDH/PTSMtl). A significant
similarity in sensitivities across the ten fits (correlation coefficient
values, R2 = 0.6 to R2 = 0.97 between all pairs of fits) for mannitol
and 2,3-butanediol dynamics were observed (results can be found
in Additional File 7, ESI†). So, even in the absence of knowing
the exact parameter values, these results seem to be relatively
conserved by parametric uncertainty.

The sensitivity response coefficients for the wild type over
mannitol and 2,3-butanediol are shown in Fig. 5B. The sensitive

analysis of the model showed that both mannitol and
2,3-butanediol are highly sensitive to perturbation in LDH.
This confirmed loss of LDH as an important step in a strategy
to improve mannitol and 2,3-butanediol production levels.
A strong negative control of LDH over the mannitol and
2,3-butanediol levels has been reported for L. lactis.48,49

Furthermore, the 2,3-butanediol production has the highest
positive sensitivity to variations of BDH. The ALS has also a
positive effect, but to a lesser extent. Our model also suggests
that reduction of PFK activity would lead to increased f6p, and
consequently higher mannitol production. Accumulation of f6p

Fig. 7 Concentration response coefficients from global sensitivity analyses to variations in Vmax for an LDH/PTSMtl deficient strain. The response
coefficients in Fig. 6 are recalculated as described in the Methods section. The effects of changes in Vmax values of the enzymes on two state variables
(2,3-butanediol and mannitol_Ext) were analyzed in detail. The bar graphs correspond to two of these state variables (2,3-butanediol and mannitol_Ext).

Table 1 Summary of relevant physiological outputs obtained using perturbation analysis of the model, including targets experimentally described in the
literature and novel targets for intervention not yet tested experimentally

Target (s) Observation/candidate target Ref.

Experimental
evidence

LDH LDH reduction results in a large and positive influence on mannitol
and 2,3-butanediol levels.

47–49

LDH & MPD LDH deficiency and MPD overexpression increase mannitol levels. 49
LDH & PTSMtl PTSMtl inactivation in LDH deficiency increases mannitol production. 25
LDH/PTSMtl & MP LDH/PTSMtl deficiency and MP overexpression increase mannitol. 27

In silico target
predictions

PFK PFK underexpression exerted a large positive control over the mannitol production. —
MP Overproduction of MP increases levels of mannitol production in W.T. larger

than the MPD overexpression.
—

LDH & MP and MPDa LDH deficiency and combination of MP and MPD overexpression increase mannitol levels. —
LDH/PTSMtl & MPD LDH/PTSMtl deficiency and MPD overexpression increase mannitol levels. —

— not described in the literature. a This approach has been published only for growing cells.50
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due to a constriction of the level of PFK in L. lactis has been
described by others.54 It is also interesting to note that the
PTSMtl had a negative control over mannitol accumulation. MP
reaction was found to have a high positive control to increase
mannitol amounts, a result fully in line with the experimental
data.50 Besides, MPD also has a positive effect on mannitol
production, but with a smaller magnitude (Fig. 5B).

The sensitivity response coefficients for the LDH mutant strain
and the double mutant strain LDH/PTSMtl are shown in Fig. 6 and 7,
respectively. For these strains and based on the sensitivity analysis
the following results were found: (i) MPD (an important reaction
involved in NAD+ regeneration) overexpression in the LDH-deficient
strain exerted a substantial positive influence over the mannitol
concentration as observed in ref. 49; (ii) PTSMtl disruption in the
LDH-deficient background increases mannitol production, as con-
firmed experimentally;25 (iii) as expected, up-regulation of BDH, and
down-regulation of the acetoin export rate in the LDH-deficient
strain were suggested by the sensitivity analysis to increase
2,3-butanediol production; (iv) the underexpression of AE enzyme
in the LDH/PTSMtl double mutant leads to decreased mannitol
production. This conclusion is in agreement with a recent observa-
tion as reported in ref. 27; and (v) the MP overexpression in the LDH/
PTSMtl mutant had a positive control over mannitol. This prediction
is in agreement with experimental data.27 Also, our computational
results showed that both MP and MPD overexpression in the LDH
mutant strain have a positive sensitivity over mannitol production.
Thus, the combination of MP and MPD appears as one of the most
promising strategies to elevate the mannitol level, which is in line
with previous findings in L. lactis.50

One interesting remark is that these sensitive control coefficients
are reasonably accurate and in line with experimental evidence as
described elsewhere in the literature. For instance, the control
patterns found for the wild type strains of L. lactis (Fig. 5B) support
that the LDH underexpression is an important target for mannitol
and 2,3-butanediol production. Moreover, from the results of the
present work, promising targets for further hypotheses testing in
our laboratory were also identified such as, the overexpression of
MP in the wild-type strain. The entire analyzed key phenotypes
outputs are summarized in Table 1.

Thus, this improved model of L. lactis metabolism is able to
capture the main kinetic properties of the L. lactis metabolic
network, anticipating its application as a tool in hypothesis-
driven experimental studies and metabolic engineering. In other
words, it is possible to make predictions under experimental
conditions differing from the one that was used to calibrate the
model, proving its generalization capability.

Conclusions

We have extended a previous kinetic model of L. lactis, with the
2,3-butanediol and mannitol production pathways, and the
branches to ethanol and acetate. This extended model was
consistent with a wide range of experimental data. The simulation
discrepancies between experimentally measured metabolite con-
centrations and simulated values were very small. The model was

also able to accurately predict time-courses under new initial
conditions, which illustrates its generalization capability.

Through sensitivity analysis of control coefficients, under-
expression of PFK and overexpression of MP in a wild type strain are
suggested as promising targets to increase the mannitol production
in L. lactis. Furthermore, the sensitivity analysis identified the
combination of MP and MPD overexpression in a LDH deficient
strain as key to increase the mannitol level, as experimentally
observed for L. lactis growing cells.50 Moreover, it was predicted that
MPD overexpression for a LDH/PTSMtl deficient strain could be a
good target for mannitol production. In addition, our other tests are
compatible with previously published studies.

We believe that the present model could be used to support a
rational exploration of efficient metabolic engineering strategies
in L. lactis.

Abbreviations

glc_Ext Glucose extracellular
g6p Glucose-6-phosphate
f6p Fructose-6-phosphate
fbp Fructose-1,6-bisphosphate
g3p Glyceraldehyde-3-phosphate
bpg 1,3-Diphosphoglycerate
pep Phoshornolpyruvate
pyr Pyruvate
lactate Lactate extracellular
acetoin_Ext Acetoin extracellular
acetCoA Acetyl-coenzymeA
m1p Mannitol-1-phosphate
mannitol_Ext Mannitol extracellular
atp Adenosinetriphosphate
adp Adenosinediphospahte
nad Nicotinamide adenine dinucleotide
nadh Dihydronicotinamide adenine dinucleotide
pi Phosphate intracellular
pi_Ext Inorganic phosphate extracellular
PTS_Glc and PTSGlc

Phosphotransferase system
ATPase ATP phosphatase
pi Trsp. Phosphate transport
PGI Phosphoglucose isomerase
PFK Phosphofructokinase
FBA Fructose-1,6-bisphosphate aldolase
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
ENO Enolase
PYK Pyruvate kinase
LDH Lactate dehydrogenase
PFL Pyruvate-dehydrogenase
AE Alcohol dehydrogenase
ACK Acetate kinase
ALS a-Acetolactate synthase
BDH 2,3-Butanediol dehydrogenase
MPD Mannitol-1-phosphate dehydrogenase
MP Mannitol 1-phosphatase
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PTS_Mtl and PTSMtl

Mannitol phosphotransferase system
Ace. Trsp. Acetoin efflux
Mtl. Trsp. Mannitol efflux
FBPase Fructose-1,6-bisphosphate phosphatase
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